
Corso di Laurea Magistrale in Matematica

Decision Techniques for
Parameterized Verification: the

case of Token-Passing Rings

Relatore:
Prof. Silvio GHILARDI

Tesi di laurea di:
Enrico LIPPARINI

Matr. 921371

Anno Accademico 2018/2019

2

Contents

Introduction 5

Aknowledgements 9

I Token-Passing Rings as Labeled Transition Systems 11

1 Labeled Transition Systems (LTS) 11
1.1 Definition . 11
1.2 Composition . 12

1.2.1 Associativity . 13
1.3 Projection and silent action . 16

2 Temporal Logics 17
2.1 CTL* . 17
2.2 Computational Tree Logic . 19
2.3 Linear Temporal Logic . 19
2.4 Indexed Temporal Logics . 20

3 Token passing rings as LTS 23
3.1 Definition of token passing ring 23
3.2 Fairness conditions . 25
3.3 Stuttering bisimulation . 27
3.4 The Reduction Theorem . 31

4 Decidability results for token-passing rings 34
4.1 Parameterized model-checking problem 34
4.2 Cutoff theorems . 36
4.3 Overview over more general (un)decidability results 43
4.4 Applications . 44

II Token-Passing Rings as array-based systems 46

5 System description 46
5.1 Preliminaries . 46
5.2 Array-based systems . 48
5.3 Backward reachability . 49
5.4 Formalization of token-passing rings 51

6 Theory of arrays over finite rings and MSOL 53
6.1 Introduction of S1S . 53
6.2 Encoding the theory of arrays over finite rings into S1S 55

3

7 Decidability of the D˚@˚-fragment of the theory of finite rings 57
7.1 Decidability for finite sets of literals 57
7.2 Satisfiability of a quantified fragment 59

8 Decidability of the D˚@˚-fragment of the theory of arrays over
finite rings 61
8.1 Decidability for finite sets of literals 61
8.2 With one quantifier . 62

8.2.1 Particular case . 62
8.2.2 General case . 64

8.3 Handling constants . 68
8.4 Some observations on the general case with many universal quan-

tifiers . 69

4

Introduction

Model checking is a powerful method to formal verify properties of com-
puter systems of various kinds, having more and more applications in proving
correctness of both hardware and software systems. Indeed, it plays a funda-
mental role in many fields where malfunctioning is not an option: well-known
examples involve air traffic control systems, medical technologies, telecommuni-
cations networks, and e-commerce.

Along with the increasing use of computer systems in key economic sectors
during the second half of the 1900s, ensuring their correctness became a hot
topic in computer science. Nonetheless, not much progress was done until the
beginning of the 80’s: in fact, most strategies involved hand constructed proof
(mostly using Floyd-Hoare logic). There were still no appropriate frameworks
to express concepts like mutual exclusion or deadlocks. In the late 1970’s Pnueli
found the missing link: temporal logics. In fact, given a concurrent system, by
describing the behaviour of its individual statements as a set of axioms, the
problem can be reduced to prove properties in the constructed theory. The
very last steps to get to model checking where made by Clarke, Emerson, and
Sifakis. In addition to their fundamental works on improving temporal logics
expressiveness, their great merit was to put forward the idea that instead of
verifying through a synthesis method that a formula is valid in every model,
what really matters is to explicitly show a finite model in which the formula is
not valid.

In general, model checking can be applied to a wide range of systems, like
sequential, distributed, concurrent, reactive, and more. However, it has proven
to be particularly successful for finite-state automata, expecially by using an
explicit approach. While explicit model checking is not possible while treating
with infinite state systems, new techniques like showing the existence of cutoffs
are proving themselves able to overcome this problem.

A simple yet very relevant case is the token-passing rings one, in which sev-
eral concurrent processes disposed in circle exchange information through the
clockwise passage of a token.

The thesis is divided in two parts. In the first part we analyze the problem of
finding cut-off theorems in the case of token-passing rings seen as labeled tran-
sition systems. Main results are given by the works of Emerson and Namjoshi
[1995, 2003].

In the second part we aim to transpose the problem in the SMT (Satisfi-
ability Modulo Theories) formalism using the array-based systems structure,
introduced by Ghilardi and Ranise [2010]. This new approach presents re-
markable advantages. In fact, by establishing a decidability procedure obtained
through the application of formal rules, the theory of token-passing rings can
be potentially encoded in any SMT-solver. The main result achieved in the sec-
ond part, obtained in two different ways, is the proof of the decidability of the

5

satisfiability problem for the fragment of the theory of arrays over finite rings
containing all the formulas of the form Dy@xA. The first way consists in encod-
ing the problem into monadic second order logic of one-successor function S1S.
This approach, while being mathematically very solid, is rather weak from the
complexity viewpoint. In the second proof we sketch a step-by-step procedure,
which better adapts to the modular structure of an SMT solver, by being more
direct.

The thesis is structured as follows:

The first chapter contains the definition of Labeled Transition System and
the description of its basic operations. Moreover, a proof of the associativity for
composition is presented.

Temporal logics, a founding piece in the field of model checking, are intro-
duced in the second chapter. After a brief description of the most commonly
used temporal logics, as CTL, CTL* and LTL, a fair amount of space is reserved
for presenting indexed temporal logics, a powerful framework while dealing with
parameterized verification.

The third chapter contains the construction of the token-passing rings as
labeled transition systems plus the proof of two crucial theorems necessary to
obtain cutoff results. Stuttering bisimulation is a key concept for comparing
similar labeled transition systems (e.g. two token-passing rings having different
dimensions) between them: in fact, the valid formulas in stuttering equivalent
systems are closely related, as proved in Thm 3.1. The other essential result is
the Reduction theorem, which provides the construction of a stuttering equiva-
lence between quotients of token-passing rings having different dimension.

In the fourth chapter the parameterized model checking problem is presented
and several cutoffs theorems are proved. Furthermore, a brief overview of the
state-of-the-art of parameterized verification is given, summarizing the most
relevant decidability and undecidability results for richer topologies than the
unidirectional rings one. Finally, we show how token-passing rings find applica-
tions in several important real-world scenarios.

In the fifth chapter we present some logic preliminaries and introduce the
central notions of array-based system and backward reachability. First, we de-
fine the theory of arrays: a three-sorted theory, defined over a (mono-sorted)
index theory and a (multi-sorted) element theory. Then we formally describe
token-passing rings as array-based systems: the element theory is a theory hav-
ing two enumerated sorts, and the index theory is the theory of finite rings.
Being not locally finite, this index theory leads to a particularly interesting
case. In fact, the correctness of the backward reachability algorithm requires
the decidability of the fragment D˚@˚ of the theory of arrays. While this result
can be easily obtained having a locally finite index theory, for our case we need
to explore new paths. The next chapters are dedicated to proving the decid-
ability of the fragment D˚@˚ in two different ways.

The first proof is based on encoding the theory into the monadic second

6

order logic (MSOL) of one-successor function S1S. By doing so, we reduce to
the decidability of S1S, which is a well-known result. In particular, this decision
procedure involves associating to a S1S formula a Büchi automaton and then
checking whether its language is not empty. However, finding this Büchi au-
tomaton can be potentially very bad computationally speaking, especially when
having to construct complements. This leads us to try for a more direct proof,
treated in the last two chapters.

In the seventh chapter we deal with the theory of finite rings without arrays.
First, we provide a decision procedure for the satisfiability problem of finite sets
of literals. Then we show a procedure to construct an equisatisfiable quantifier
free formula from a formula with quantifiers, which leads to the decidability in
the general case for the D˚@˚-fragment.

In chapter eight we propose a decidability proof for the D˚@˚-fragment of
the theory of arrays over finite rings, which is based on the application of for-
mal transformation rules. First, we show a proof for the case with no universal
quantifiers, similarly to what did in chapter seven. Then we see how to deal
with a single universal quantifier, first in the case without constants and then
in the one with constants. Finally, we sketch a proof for the general case (this
proof must be seen as a work-in-progress). The underlying idea of is to use the
mosaic method. The mosaic method consists in showing that the existence of a
model is tied with the existence of mosaics (that can be thought as small po-
tential pieces of model) well linked between each other. Indeed, we manipulate
the starting formula to show either a set of mosaics from which a real model
can be constructed, or that the formula is unsatisfiable.

7

8

Ringraziamenti

Chi mi conosce sa che in queste occasioni non sono capace di trovare le
parole giuste, che qualsiasi loro combinazione mi sembra appiattire ciò che vorrei
comunicare. Sono quindi certo che nessuno ne avrà male se questa sezione sarà
la più scarna della tesi (per me, senza dubbio, è stata anche la più complicata!).
Un primissimo grazie va ai miei genitori: la mia infinita e molesta curiosità
è sicuramente e in gran parte merito e colpa loro. A Silvio Ghilardi va un
ringraziamento speciale: oltre ad aver fatto nascere in me la passione per il
ragionamento automatico, la sua enorme pazienza e disponibilità sono stati
elementi imprescindibili per la buona riuscita di questo lavoro. Infine, a chi più
di tutti mi ha supportato e sopportato in questi impegnativi mesi di stesura
della tesi, va l’ultimo enorme ringraziamento piccolissimo.

9

10

Part I

Token-Passing Rings as Labeled
Transition Systems

1 Labeled Transition Systems (LTS)

1.1 Definition

Definition 1.1 (LTS). A Labeled Transition System (LTS) A is a 6-tuple
pQ,Σ, δ, λ, L, Iq where

• Q is a non-empty set of states

• Σ is an alphabet of transitions (called also actions) which contains a special
symbol τ (called the silent action)

• δ Ď Qˆ ΣˆQ is a transition relation such that @q P Q pq, τ, qq P δ

• L is a non-empty set of labels of the form 2AP , where AP is a set of atomic
propositions

• λ : Q ÞÑ PpLq is a labelling function

• I Ď Q is a set of initial states.

We write s
a
ÝÑA t instead of ps, a, tq P δ, and sÑA t instead of pDa P A : ps, a, tq P δq.

Moreover, A can be dropped when it is clear which LTS we are referring to.

Definition 1.2 (Path). A path p on an LTS A is a pair pσ, αq where: σ is a
sequence of states (s0, s1, ...), α is a sequence of actions (a0, a1, ...), |σ| “ |α|`1,

and, @i ď |σ|, si
ai
ÝÑA si`1.

The lenght of a path p “ pσ, αq is defined as |p| :“ |σ|.

Definition 1.3 (Fullpath). A path p is said to be a fullpath iff either it is infinite
(|p| “ 8), or its last state sn is terminal (that is, for all a P Σ s.t a ‰ τ , and
for all q P Q, psn, a, qq R δ).

Definition 1.4 (Execution). A path p is an execution (or computation) iff it
is a fullpath and its first state s0 is an initial state (s0 P I).

11

Definition 1.5 (Isomorphism of LTS). Two LTS A and B are said isomorphic
iff all the following conditions are satisfied at the same time:

1. There is a bijection fQ : QA Ñ QB s.t. fQpIAq “ IB

2. There is a bijection fΣ : ΣA Ñ ΣB s.t. fΣpτAq “ τB

3. For all q, q1 P QA and for all a P ΣA: q
a
ÝÑA q

1 iff fQpqq
fΣpaq
ÝÝÝÑB fQpq

1q

4. There is a bijection fL : LA Ñ LB s.t. fLpλApqqq “ λBpfQpqqq for all
q P Q.

1.2 Composition

Given two LTSA “ pQA,ΣA, δA, λA, LA, IAq andB “ pQB ,ΣB , δB , λB , LB , IBq,
and a bijective partial function Γ : ΣAztτAu ÞÑ ΣBztτBu, it is possible to define
the composed LTS A||ΓB (also noted AB when Γ is clear, with an abuse of
notation).
In order to do that let’s first introduce some notation:

• ΣΓ
IA

:“ ΣAzdompΓqztτAu (actions internal on A)

• ΣΓ
IB

:“ ΣBzImpΓqztτBu (actions internal on B)

• ΣΓ
S :“ tpa, bq P ΣAˆΣB : Γpaq “ bu i.e. ΣΓ is the graph of Γ (synchronized

actions)

Note that all the sets are defined with respect to Γ.

Definition 1.6. Given two LTS A, B, and a bijective partial function
Γ : ΣAztτu ÞÑ ΣBztτu, the composed LTS A||ΓB “ pQAB ,ΣAB , δAB , λAB , LAB , IABq
is defined as:

• QAB “ QA ˆQB

• ΣAB “ ΣΓ
IA

Ů

ΣΓ
IB

Ů

ΣΓ
S

Ů

tτABu

• δAB is defined by: ps, tq
c
ÝÑAB pu, vq holds iff one of the following holds:

(a) c P ΣΓ
IA
^ s

c
ÝÑA u ^ t “ v

(b) c P ΣΓ
IB

^ s “ u ^ t
c
ÝÑB v

(c) c “ pa, bq P ΣΓ
S ^ s

a
ÝÑA u ^ t

b
ÝÑB v

(d) c “ τAB ^ s
τA
ÝÝÑA u ^ t

τB
ÝÝÑB v

• LAB “ LA
Ů

LB

• λABps, tq “ λApsq
Ů

λBptq

• IAB “ IA ˆ IB

12

1.2.1 Associativity

Proposition 1. Let A, B and C be three LTS, and let A||Γ1
B and B||Γ2

C be
two compositions. If ImpΓ1q X dompΓ2q “ H then pA||Γ1

Bq||Γ2
C is isomorphic

to A||Γ1
pB||Γ2

Cq.

Proof. Let’s use the abbreviation pABqC for pA||Γ1Bq||Γ2C and ApBCq for
A||Γ1pB||Γ2Cq.

• The compositions are well-defined: It is not obvious that we can write
pA||Γ1

Bq||Γ2
C, since the domain of Γ2 is a subset of ΣBztτBu and not a

subset of ΣABztτABu as it should be.
Remember that ΣABztτABu “ ΣΓ1

IA

Ů

ΣΓ1

IB

Ů

ΣΓ1

S , where ΣΓ1

IB
“ ΣBzImpΓ1qztτBu.

By hypothesis, ImpΓ1qXdompΓ2q “ H, hence dompΓ2q Ď ΣΓ1

IB
Ď ΣABztτABu.

This means it is possible to see Γ2 as a partial function with domain in
ΣABztτABu, therefore the first composition is well defined.
A similar reasoning can be done for the other composition, showing that
Γ1 is well defined as a partial function with image in B||Γ2C.

• A bijection for the sets of states (Q and I) arise naturally by the asso-
ciativity of the cartesian product. In fact, as bijection we can take the
identity. Thus condition 1. of the definition of isomorphism is satisfied.

• A bijection for the sets of labels (L) arise naturally by the associativity of
the disjoint union: again, we can take the identity. Trivially, condition 4.
is satisfied.

• In order to show that there is a trivial bijection for the sets of actions (Σ),
therefore proving condition 2., some annoying calculations are needed, but
it is just about applying the definitions given.

ΣpABqC “ ΣΓ2

IAB

ğ

ΣΓ2

IC

ğ

ΣΓ2

S

ğ

tτpABqCu (1)

ΣΓ2

IAB
“ ΣAB z dompΓ2q z tτABu

“ pΣΓ1

IA

ğ

ΣΓ1

IB

ğ

ΣΓ1

S

ğ

tτABuq z dompΓ2q z tτABuq

“ ΣΓ1

IA

ğ

pΣΓ1

IB
zdompΓ2qq

ğ

ΣΓ1

S

“ ΣΓ1

IA

ğ

rpΣB z ImpΓ1q z tτBuq z dompΓ2qs
ğ

ΣΓ1

S

“ ΣΓ1

IA

ğ

pΣB z ImpΓ1q z dompΓ2q z tτBuq
ğ

ΣΓ1

S

(2)

Substituting the last member of (2) in the right side of (1) we get:

ΣpABqC “ ΣΓ1

IA

ğ

pΣB z ImpΓ1q z dompΓ2q z tτBuq
ğ

ΣΓ1

S

ğ

ΣΓ2

IC

ğ

ΣΓ2

S

ğ

tτpABqCu
(3)

13

Let’s do the same for pABqC:

ΣApBCq “ ΣΓ1

IA

ğ

ΣΓ1

IBC

ğ

ΣΓ1

S

ğ

tτApBCqu (4)

ΣΓ1

IBC
“ ΣBC z ImpΓ1q z tτBCu

“ pΣΓ2

IB

ğ

ΣΓ2

IC

ğ

ΣΓ2

S

ğ

tτBCuq z ImpΓ1q z tτBCuq

“ pΣΓ2

IB
z ImpΓ1qq

ğ

ΣΓ2

IC

ğ

ΣΓ2

S

“ rpΣB zdompΓ2q z tτBuq z ImpΓ1qs
ğ

ΣΓ2

IC

ğ

ΣΓ2

S

“ pΣB z ImpΓ1q zdompΓ2q z tτBuq
ğ

ΣΓ2

IC

ğ

ΣΓ2

S

(5)

Substituting the last member of (5) in the right side of (4) we get:

ΣApBCq “ ΣΓ1

IA

ğ

pΣB z ImpΓ1q zdompΓ2q z tτBuq
ğ

ΣΓ2

IC

ğ

ΣΓ2

S

ğ

ΣΓ1

S

ğ

tτApBCqu
(6)

Identifying τApBCq with τpABqC , and up to reordering, the RHS of (3) is
equal to the RHS of (6): ΣpABqC “ ΣApBCq (thus is legit to write ΣABC).
It remains to show that these bijetions satisfy condition 3.

• Again, the proof is a bit long but there is no difficult concepts beyond it,
it is all about applying the definitions.

Suppose d P ΣABC : we have to prove that ps, t, uq
d
ÝÑpABqC pv, w, zq iff

ps, t, uq
d
ÝÑApBCq pv, w, zq, for all ps, t, uq P QABC and pv, w, zq P QABC .

Let’s procede by case:

– d P ΣΓ1

IA
: ps, t, uq

d
ÝÑpABqC pv, w, zq

iff ps, tq
d
ÝÑAB pv, wq ^ u “ z

iff ps
d
ÝÑA v ^ t “ wq ^ u “ z

iff s
d
ÝÑA v ^ pt, uq “ pw, zq

iff ps, t, uq
d
ÝÑApBCq pv, w, zq

– d P ΣΓ2

IC
: ps, t, uq

d
ÝÑpABqC pv, w, zq

iff ps, tq “ pv, wq ^ u
d
ÝÑC z

iff s “ v ^ pt “ w ^ u
d
ÝÑC z)

iff s “ v ^ pt, uq
d
ÝÑBC (w,z)

iff ps, t, uq
d
ÝÑApBCq pv, w, zq

– d P pΣB z ImpΓ1q zdompΓ2q z tτBuq: ps, t, uq
d
ÝÑpABqC pv, w, zq

iff ps, tq
d
ÝÑAB pv, wqq ^ u “ z

14

iff ps “ v ^ t
d
ÝÑB wq ^ u “ z

iff s “ v ^ pt
d
ÝÑB,C w ^ u “ zq

iff s “ v ^ ppt, uq
d
ÝÑB pw, zqq

iff ps, t, uq
d
ÝÑApBCq pv, w, zq

– d “ pa, bq P ΣΓ1

S : ps, t, uq
pa,bq
ÝÝÝÑpABqC pv, w, zq

iff ps, tq
pa,bq
ÝÝÝÑAB pv, wq ^ u “ z

iff s
a
ÝÑA v ^ t

b
ÝÑB w ^ u “ z

iff s
a
ÝÑA v ^ ppt, uq

b
ÝÑBC pw, zqq

iff ps, t, uq
pa,bq
ÝÝÝÑApBCq pv, w, zq

– d “ pb, cq P ΣΓ2

S : ps, t, uq
pb,cq
ÝÝÝÑpABqC pv, w, zq

iff ps, tq
b
ÝÑAB pv, wq ^ u

c
ÝÑC z

iff s “ v ^ t
b
ÝÑB w ^ u

c
ÝÑC z

iff s “ v ^ ppt, uq
pb,cq
ÝÝÝÑBC pw, zqq

iff ps, t, uq
pb,cq
ÝÝÝÑApBCq pv, w, zq

– d “ τABC : ps, t, uq
τABC
ÝÝÝÑpABqC pv, w, zq

iff ps, tq
τAB
ÝÝÝÑAB pv, wq ^ u

τC
ÝÝÑC z

iff s
τA
ÝÝÑA v ^ t

τB
ÝÝÑB w ^ u

τC
ÝÝÑC z

iff s
τA
ÝÝÑA v ^ ppt, uq

τBC
ÝÝÝÑBC pw, zqq

iff ps, t, uq
τABC
ÝÝÝÑApBCq pv, w, zq

15

1.3 Projection and silent action

Definition 1.7. Given a LTS of the form C “ A||ΓB, its projection on A is
the LTS C|A “ pQ,Σ, δ, λ, L, Iq where

• Q “ QC

• Σ “ ΣA

• δ is defined by: s
a
ÝÑ t holds iff one of the following holds:

(a) a P ΣΓ
IA
^ s

a
ÝÑC t

(b) a P dompΓq ^ s
pa,Γpaqq
ÝÝÝÝÝÑC t

(c) a “ τA ^ pDc P pΣΓ
IB
Y tτABuq : s

c
ÝÑC tq

• L “ LA

• λpsq “ pλCpsqq|LA

• I “ IC

The only relevant changes happening are that the internal actions of B are being
compressed into the silent action τ , and the labels not in A vanish. Synchronized
actions are not compressed into τ .

Note: dealing with an associative composition of LTS of the form
C “ A1 ||Γ1

A2 ||Γ2
... ||Γn´1

An, given a set of indices I “ ti1, ..., imu Ď rns it
is possible to project C on the processes indexed by elements in I. Indeed, this
sort of ”group projection” is nothing but the result of the application step by
step of the single projections on Ai1 , Ai2 , ... , Aim . Briefly, by C|I we indicate
pppC|Ai1

q|Ai2
q...q|Aim

. Doing so without worries is possible only thanks to the
associativity of the composition.

This kind of operation will play an important role while studying token
passing rings. Indeed, in token passing rings it is really useful to project Ringn
on a subset I of the set of the indices: in such case, we project Ringn onto the
processes indexed by the elements of I (see chapter 3 for the details).

16

2 Temporal Logics

2.1 CTL*

Syntax. The temporal logic CTL˚ has two types of formulas: state formulas
and path formulas. These formulas are defined over a set of atomic propositions
AP as follows:

S1) If P is an atomic proposition, then P is a state formula.

S2) If f is a state formula, then f is a state formula.

S3) If f and g are state formulas, then f ^ g is a state formula.

S4) If f is a path formula, then Ef is a state formula (E stands for ”exists a
future such that”).

S5) If f is a path formula, then Af is a state formula (A stands for ”for all
the futures”).

P1) If f is a state formula, then f is also a path formula.

P2) If f is a path formula, then f is a path formula.

P3) If f and g are path formulas, then f ^ g is a path formula.

P4) If f and g are path formulas, then f Uw g is a path formula (Uw stands
for ”weak until”).

P5) If f is a path formula, then Xsf is a path formula (Xs stands for ”strong
next time”).

It can be useful to introduce some derived operators as abbreviations, in
order to improve the readability of a formula. We can define the usual logic
connectors:

- f _ g ” p f ^ gq

- f Ñ g ” f _ g

- f Ø g ” f Ñ g ^ g Ñ f

and some new symbols:

- Gf ” f Uw false (G stands for ”globally”, or ”always”)

- Ff ” pG fq (F stands for ”eventually in the future”)

- f Us g ” pf Uw gq ^ Fg (Us stands for ”strong until”)

- Xwf ” pXs fq (Xw stands for ”weak next time”)

17

Semantics. Now we procede to define the semantics of the formulas con-
structed above, with respect to an LTS A “ pQ,Σ, δ, λ, 2AP , Iq.

For a state formula f , we write A, s |ù f (or just s |ù f when A is clear), to
mean that the state formula f is true in A at the state s.

For a path formula f , we write A, p |ù f (or just p |ù f when A is clear) to
mean that the path formula f is true in A w.r.t the fullpath p.

The notion of truth is inductively defined as follows:

S1): s |ù P iff P P λpsq

S2): s |ù f iff not s |ù f

S3): s |ù f ^ g iff s |ù f and s |ù g

S4): s |ù Ef iff there exists a fullpath p starting at s such that p |ù f

S5): s |ù Af iff for every fullpath p starting at s, it holds that p |ù f

P1): p |ù f iff s0 |ù f , where s0 is the first state of p

P2): p |ù f iff not p |ù f

P3): p |ù f ^ g iff p |ù f and p |ù g

P4): p |ù f Uw g iff for all i ă |p|, either exists j ď i such that sj |ù g,
or si |ù f

P5): p |ù Xsf iff the second state of the path s1 exists and s1 |ù f

Note: it is not necessary to include A among the primitive operators. In-
deed, it could be defined as an abbreviation: Af ” E f , observing that this
abbreviation is consistent with the notions of truth S4 and S5 defined above.
However, including it among the primitive operators brings the remarkable ad-
vantage that it is way easier to define CTL as a sublanguage of CTL˚ (see
subsection below).

Now, one should note that the actions labeling does not play any role in
the semantics of CTL˚ formulas. In fact, the description of CTL˚ formulas
presented above suits as well unlabeled transition systems. It is therefore pos-
sible to enrich our logic by adding, for every action a, a new operator Xa

s :

P5a) If f is a path formula and a is an action, then Xa
s f is a path formula.

This new temporal logic is called CTL˚Σ, and its semantics is an extension of
the CTL˚ one with the addition of:

P5a): p |ù Xa
s f iff there exists i ă |p| such that for every j ă i, the j-th action

is aj “ τ , and the state si`1 exists and si`1 |ù f

18

2.2 Computational Tree Logic

CTL˚ takes its name from CTL (Computational Tree Logic), of which it is
an extension. In fact, CTL can be defined as a fragment of CTL˚ by replacing
P1´ P5 with:

P̃4) If f and g are state formulas, then f Uw g is a path formula

P̃5) If f is a state formula, then Xsf is a path formula

The language CTL can be defined as the set of formulas generated by S1´S5,
P̃4, P̃5.

Proposition 2. CTL is a sublanguage of CTL˚.

Proof. First, note that every state formula of CTL is in CTL˚, since the rules
S1´ S5 are shared by both the languages.

Every CTL-formula generated by P̃4 is in CTL˚: if f is a CTL-state for-
mula, it is also a CTL˚-state formula. By P1, it is a CTL˚-path formula, and
by P4, f Uw f is a CTL˚-path formula.

The same argument can be made for formulas generated by P̃5.

2.3 Linear Temporal Logic

An important fragment of CTL˚ is LTL (Linear Temporal Logic). It con-
sists of all the CTL˚ formulas of the form Af , where A is the universal path
quantifier and f is a CTL˚ formula not containing any path quantifier E or A.

19

2.4 Indexed Temporal Logics

The idea of indexed temporal logics was introduced by Browne, Clarke, and
Grumberg in 1989 [3], with the aim to provide a convenient temporal logic for
concurrent systems. In fact, adding the possibility to quantify over indices is a
good strategy to improve the expressiveness of the temporal logic we are working
on (be it CTL˚, LTL, or others).

For example, without index quantifiers, in order to express the property
”there is a process in a critical section” for a system with n processes, one
should write

Ž

iPrns

criticali. Since this formula is parameterized by n, one should

write different formulas for similar systems with a different number of processes.
By allowing to quantify over indices, the same property can be expressed for
similar systems by the formula Di : criticali. Of course, the semantics will be
different from system to system, but having the same syntax will be very useful.

We give below a definition of indexed CTL˚ (also called ICTL˚), from which
it is possible to obtain ILTL or ICTL as fragments.

In the following, by I we indicate an infinite set of index variables. The
semantics will be defined over a colored graph, consisting of a set of vertices V ,
a set of edges E Ď V ˆ V , and a function type : V Ñ Type1. If |typepV q| “ d,
we say that the graph is a d-colored graph, and could use rds instead of Type.
By i P Epjq we mean pi, jq P E .
A range expression r is an expression that can have one of the following forms:

a) neqpi1, ..., ikq

b) i P Epjq

c) typepiq “ t

d) true

The formulas are defined over a set of atomic propositions AP .

Syntax:

I-S1) If P is an atomic proposition and i P I, then Pi is a state formula.

S2) If f is a state formula, then f is a state formula.

S3) If f and g are state formulas, then f ^ g is a state formula.

S4) If f is a path formula, then Ef is a state formula.

S5) If f is a path formula, then Af is a state formula.

1Here, by Type we indicate the set of colors in the common language of graphs.

20

I-S6) If f is a state formula and r is a range expression, then @i : r : f is a state
formula.

I-S7) If f is a state formula and r is a range expression, then Di : r : f is a state
formula.

P1) If f is a state formula, then f is also a path formula.

P2) If f is a path formula, then f is a path formula.

P3) If f and g are path formulas, then f ^ g is a path formula.

P4) If f and g are path formulas, then f Uw g is a path formula.

P5) If f is a path formula, then Xsf is a path formula.

I-P6) If f is a path formula and r is a range expression, then @i : r : f is a path
formula.

I-P7) If f is a path formula and r is a range expression, then Di : r : f is a path
formula.

When r ” true, instead of p@i : r : fq we will write p@i : fq, and instead of
pDi : r : fq we will write pDi : fq

Semantics. Now we define the semantics of the formulas constructed above,
interpreted over a composed LTS A “ T1 || ... ||Tk, having associated a graph
G “ pV, E , typeq defined as:

- V “ t1, ..., ku

- typepiq “ typepjq iff Ti is isomorphic to Tj

- pi, jq P E iff ΣA contains a synchronized action between Ti and Tj .

and over a valuation e : I Ñ V .
A valuation e is said to satisfy the range expression r iff:

1. r ” neqpi1, ...imq and epi1q, ..., epimq are pairwise distinct

2. r ” typepiq “ t and typepepiqq “ t

3. r ” i P Epjq and pepiq, epjqq P E .

4. r ” true

Moreover, a valuation e is said an i-variant of a valuation e1 iff epjq “ e1pjq for
all j P Iztiu.

For an A-state s “ ps1, ..., skq or a path p, the notions of truth A, s, e |ù f
and A, p, e |ù f are defined inductively by (A can be dropped when it is clear):

21

I-S1): s, e |ù Pi iff P P λTepiq
psepiqq

S2): s, e |ù f iff not s, e |ù f

S3): s, e |ù f ^ g iff s, e |ù f and s, e |ù g

S4): s, e |ù Ef iff there exists a fullpath p starting at s such that p, e |ù f

S5): s, e |ù Af iff for every fullpath p starting at s, it holds that p, e |ù f

I-S6): s, e |ù @i : r : f iff for every i-variant e1 that satisfies r, it holds s, e1 |ù f

I-S7): s, e |ù Di : r : f iff there exists an i-variant e1 that satisfies r such that
s, e1 |ù f holds

P1): p, e |ù f iff s0, e |ù f , where s0 is the first state of p

P2): p, e |ù f iff not p, e |ù f

P3): p, e |ù f ^ g iff p, e |ù f and p, e |ù g

P4): p, e |ù f Uw g iff for all k ă |p|, either exists k1 ď k such that sk1 , e |ù g,
or sk, e |ù f

P5): p, e |ù Xsf iff the second state of the path s1 exists and s1, e |ù f

I-S6): p, e |ù @i : r : f iff for every i-variant e1 that satisfies r, it holds p, e1 |ù f

I-S7): p, e |ù Di : r : f iff there exists an i-variant e1 that satisfies r such that
p, e1 |ù f holds

Let’s define A, s |ù f if for all valuations e : I Ñ V it holds that A, s, e |ù f ,
and A, p |ù f if for all valuations e : I Ñ V it holds that A, p, e |ù f . Finally,
define:

A |ù f iff for every initial state s of A, it holds that A, s |ù f

Let’s now introduce some terminology. An index variable i and an atom Pi
are said to be bound if they are in the scope of an index quantifier @i : r or
Di : r. A formula is a sentence if every atom in it is bound. With fpi1, ...ikq
we indicate a formula in which i1, ..., ik are not bound (they are also said to be
free).

Moreover, for c1, ..., ck P V , we write A, s |ù fpc1, ..., ckq if for every valua-
tion e that maps ij to cj (for j “ 1, ..., k) it holds that A, s, e |ù fpi1, ..., ikq.

As done with CTL˚, it is possible to introduce the operator Xa
s by adding

P5aq as in the chapter 2.1, with an analogue interpretation.

22

3 Token passing rings as LTS

3.1 Definition of token passing ring

A token passing ring (TPR) consists of n isomorphic LTS Ki arranged in
an unidirectional ring Ringn (to be properly defined). Each Ki is constructed
from a process template P , i.e. each Ki is an isomorphic copy of an LTS P , and
every state, every transition and every label of Ki is indexed by i.

More specifically, we require P to be a token-passing process template, i.e.
it satisfies the following properties:

• The set of the states QP is partitioned into two non empty sets T and N .
The states in T are said to have the token, while the states in N are said
not to have the token.

• Every initial state does not have the token. That is, IP Ď N .

• P has three types of actions: the ”sending the token” action snd, the
”receiving the token” action rcv, and some internal actions ΣI . That is,
ΣP “ tsnd, rcvu Y ΣI .

• Every transition of the form q
snd
ÝÝÑP q1 requires that q has the token and

q1 has not.

• Every transition of the form q
rcv
ÝÝÑP q1 requires that q does not have the

token and q1 does.

• Every transition of the form q
a
ÝÑP q1 for a P ΣI requires that either both

q and q1 have the token, or neither of them does.

Given a process template P that satisfies these conditions, we want to define
the token passing ring as a composition of the formRingn :“ K0||K1||...||Kn´1||Dn,
where each Ki is a process (constructed from the same process template P and
indexed by i), Dn is the initial token distribution process that at the very be-
ginning synchronizes with a non-deterministically chosen Ki to pass it the token
(then does nothing), and each composition Ki||Ki`1 synchronizes the Ki-action
sndi with the Ki`1-action rcvi`1.

In order to formally define Ringn, we have to be a little pedantic. The idea is
the following: compose the first n´1 processes in order to obtain a path graph,
then compose the last process attaching it to the two extremities (obtaining a
ring graph), and finally compose the initial token distribution process with the
ring. In detail:

• Let’s first defineR1 :“ K0||Γ0K1||Γ1 ...||Γn´3Kn´2, where Γi “ tpsndi, rcvi`1qu

for 0 ď i ď n ´ 3. Since ImpΓiq X dompΓi`1q “ H for all i ă n ´ 3, as-
sociativity holds, hence the definition is well posed. Informally, we could
describe R1 as the path graph composed by the first n´ 1 processes.

23

• Now we have to attach the n-th process to the two extremities of the string
to form a ring, so let’s define R2 :“ R1||Γn´2Kn´1, where
Γn´2 “ tpsndn´2, rcvn´1q, psndn´1, rcv0qu.

• At this point we have the ring we were looking for, except for the fact that
no process holds the token, which has to be assigned non deterministically
by a distribution process Dn at the very beginning.

• So let’s define formally Dn “ pQD,ΣD, δD, λD, LD, IDq, where:

- QD “ tinit, endu.

- ΣD “ tinit snd0, init snd1, ..., init sndn´1, τu.

- ID “ tinitu.

- δD “ tpq, τ, qq : q P QDu Y ptinitu ˆ tinit sndi : i P Iu ˆ tenduq.
That is, from every initial state, the process can either do nothing,
or execute a token sending action and then terminate.

– LD “ t0, 1u (this can be seen as a flag)

– λDpqq =

#

t0u, if q “ init

t1u, if q “ end

• At last, let’s define Ringn :“ R2||ΓD
Dn, where ΓD “ tprcvi, init sndiq :

0 ď i ď n ´ 1u. At this point, we have constructed Ringn with the ar-
ticulated form Ringn “ ppK0||Γ0

K1||Γ1
...||Γn´3

Kn´2q||Γn´2
Kn´1q||ΓD

Dn,
which is completely formal.

For brevity, let’s write Mn instead of Ringn. Given an index set J Ď rns
let’s write Mn|J to indicate the projection over the processes indexed by J (note
that Dn is not included among these processes).

It could be useful to write down a brief and informal description of Mn

and of Mn|J :
An initial state of Mn is a (n+1)-uple of the form pq0, ..., qn´1, initq where

every qi is an initial local state of the process Ki (qi P IKi
), and init is the initial

state of Dn. Note that it is not said that the first action of Mn has to be the
token assignment. In fact, it could be any legal internal action of every process.
It is possible to require the first action to be the token assignment by imposing
conditions on the admissible executions, but since the theoretic results are not
affected by the possibility of a non-token assignment first action, it is preferable
to treat with the more general case.

Let’s now consider the structure of Mn|J . The states of Mn|J are the same
of Mn. What really changes are the actions and the labels. Indeed, an action
of Mn|J can be:

• An internal action of a process Kj (j P J).

• A token passing action between two processes Kj and Kj`1 (with j, j`1 P
J). This type of actions has the form psndj , rcvj`1q.

24

• A token passing action between two processes Kj and Kj`1 where either j
or j`1 are in J , but not both. Looking at the definition of projection, this
type of actions can have the form sndj (if j P J) or rcvj`1 (if j ` 1 P J).
However, it can be a little pedantic to distinguish between these two forms
even when the only real change is the name, so we will always use the form
psndj , rcvj`1q.

• A token passing action between two processes Kj and Kj`1 such that
neither j nor j ` 1 is in J . This type of actions are τ -actions.

• An initial token distribution from Dn to Kj (j P J). Looking at the
definition of projection, this type of actions has the form rcvj , but we will
accept also the form pinit sndj , rcvjq for simplicity.

• Initial token distribution from Dn to Kj (j R J). These actions are τ -
actions.

3.2 Fairness conditions

Working with token passing rings, we are interested in considering only fair
executions, i.e. executions where every process receive and then send the token
infinitely often.

There are two ways to do that. The first one is requiring that the structure
of the process template P is such that it ensures that the process will eventually
pass the token. That can be done for example setting a maximum time after
which the process forces itself to pass the token. If the process template has a
finite number of states, it is possible to check with a model-checker that every
execution of the token-passing ring is fair.

The second and more formal way is to use fairness constraints.

Definition 3.1 (Fairness constraint). Given a LTS A, a fairness constraint is
a finite set F “ tS1, ..., Sku whose elements are sets of A-states.

A path (s0
a0
ÝÑ s1

a1
ÝÑ ...) is said to be fair with respect to F iff for every

j “ 1, ..., k there are infinite i P N such that si P Sj.

In particular, we can redefine the notion of truth for a CTL˚ formula f in a
state s with respect to F (s |ùF f):

S1) s |ùF P iff s |ù P

S2) s |ùF f iff s |ù f

S3) s |ùF f ^ g iff s |ù f ^ g

S4) s |ùF Ef iff there exists a fair path p starting at s such that p |ù f

P1) p |ùF f iff p |ù f

P2) p |ùF f iff p |ù f

25

P3) p |ùF f ^ g iff p |ù f ^ g

P4) p |ùF Xsf iff the second state of the path s1 exists and s1 |ùF f

P5) p |ùF f Uw g iff for all i ă |p|, either exists j ď i such that sj |ùF g,
or si |ùF f

In general, note that the only meaningful change in the semantics is when an
existential path quantifier is involved. If one wants to consider a richer temporal
logic like CTL˚Σ, ICTL˚ or ICTL˚Σ, the redefinition of the semantics for the
new formulas is intuitively similar to the one done above.

It is now possible to define a fairness constraint for token passing rings.
Remember that, given a process template P , we indicate with T the set of the
P -states containing the token, and with N the set of the P -states that do not
contain the token. For every process Ki, the two sets are denoted by Ti and Ni.

Let’s write T̃i to indicate the set of the Mn-states such that the local state
of the process Ki is in Ti. Symmetrically, let’s write Ñi to indicate the set of
the Mn-states such that the local state of the process Ki is in Ni.

It is clear that the fairness constraint that restricts the executions to the
ones where every process receives the token infinitely often is F “ tT̃1, ..., T̃nu.

In the following, we will always work with the notion of truth with respect
to F . With an abuse of notation the F in |ùF will be dropped.

26

3.3 Stuttering bisimulation

The idea behind the definition of stuttering bisimulation is to have a tool
which enables us to compare different instances of similar systems (ex.: two
token passing rings of different sizes) which is indifferent to ”stuttering” be-
haviours (like repetitions of states, or actions irrelevant for the purposes of our
investigation). To do that we first introduce the concept of stuttering sequence
on a LTS: informally, it is a path in which there are no meaningful changes
except after the final transition (i.e. in every sequence there is only one relevant
change, and it has to be at the end of it).

Definition 3.2 (Stuttering sequence). A stuttering sequence on a LTS A is a
path p “ pσ, αq starting at a state s0 s.t.:

1. Every transition (except the final one, if the path is finite) is a τ -action

2. Every state si on the path (except possibly the final one) is s.t. λAps0q “

λApsiq

Explicitly, a path p “ pσ, αq is a stuttering sequence iff for all i P N s.t.
0 ď i ă |α| ´ 1 we have ai “ τ , a|α|´1 ‰ τ , and λAps0q “ λApsiq.

The set of stuttering sequences starting at state s and having a as final
transition is denoted by Stutterps, aq. For the set of infinite stuttering sequences
starting at state s, we write Stutterps, Infq.

Definition 3.3 (Stuttering Bisimulation). Given two LTS A and B, and a
relation R on QA

Ů

QB having associated two bijective functions hL : LA ÞÑ LB
and hΣ : ΣA ÞÑ ΣB (which map propositions and actions, respectively), we say
that R is a stuttering bisimulation iff:

1. Every initial state of A is in relation with an initial state of B, and vice-
versa

2. For every s P QA and t P QB, s R t implies that:

(a) hLpλApsqq “ λBptq

(b) For every non-silent action a and for every path p P Stutterps, aq,
there is a path q P Stutterpt, hΣpaqq such that p matches q by R.

(c) For every path p P Stutterps, Infq, there is a path q P Stutterpt, Infq
such that p matches q by R.

We say that two paths p and q match iff they can be partitioned into an
equal number of non-empty finite segments ppp1q, ..., ppmqq and pqp1q, ..., qpmqq s.t.
every state of ppiq is related to every state of qpiq, for all i “ 1, ...,m.
If there is a stuttering bisimulation between A and B, they are said to be stut-
tering equivalent (A „ B).

27

Stuttering equivalence is a powerful property. In fact, it gives a correspon-
dence between valid formulas of two stuttering equivalent LTS.

First, note that, given two composed LTS of the form A “ T1 || ... ||Tk and
B “ U1 || ... ||Ul, where Ti „ Uj (for every i P rks and for every j P rls), and a
bijective partial function h : rks Ñ rls, it possible to obtain two induced func-
tions hΣ : ΣA Ñ ΣB and hL : LA Ñ LB by applying h to every index in every
actions and in every labels. Moreover, for any formula f P ICTL˚Σ\X, let hpfq
be the formula obtained by replacing every occurrence of each proposition Pi by
Phpiq and every occurrence of every action a by hΣpaq. We have the following
results:

Theorem 3.1. Given two composed LTS of the form A “ T1 || ... ||Tk and
B “ U1 || ... ||Ul, where Ti „ Uj (for every i P rks and for every j P rls), let
R be a stuttering bisimulation between them, with associated bijective functions
hAP and hΣ constructed from a bijective partial function h : rks Ñ rls. Then,
for every s P QA and t P QB such that s R t, for every ICTL˚Σ\X state formula
f and for every valuation e it holds that

A, s, e |ù f iff B, t, e |ù hpfq (*)

and, for every matching paths p starting at s and q starting at t, for every
ICTL˚Σ\X path formula f 1 and for every valuation e it holds that

A, p, e |ù f 1 iff B, q, e |ù hpf 1q (**)

Proof. Let’s prove it by mutual induction on formulas of ICTL˚Σ\X.

Let’s first show the base case: let P P AP . Then:
A, s, e |ù Pi

ðñ (by definition)
P P λTipsepiqq

ðñ (condition 2.a of the definition of stuttering bisimulation)
P P hLpλTi

psepiqqq
ðñ (definition)

P P λUhpiq
ptephpiqqq

ðñ (by definition)
B, t, e |ù Phpepiqq

ðñ (by definition)
B, t, e |ù hpPiq

Now we prove inductively that, by applying any rule that produce a state
formula starting from state formulas satisfying (*), the produced state formula
still satisfies (*).

The conjunction case and the negative case are trivial.

Suppose f ” @i : r : g, where r is a range expression. Then:

28

A, s, e |ù @i : r : g
ðñ (by definition)

A, s, e1 |ù g for every i-variant e1 of e that satisfies r
ðñ (inductive hypothesis for each i-variant e’ of e satisfying r)

B, t, e1 |ù hpgq for every i-variant e’ of e that satisfies h(r)
ðñ (by definition)

B, t, e |ù @i : hprq : hpgq
ðñ (by definition)

B, t, e |ù hpfq

The case where f ” Di : r : g is analogous.

The proofs for path formulas formed as conjunction, negation, and index
quantifiers on other path formulas follow directly from the proofs above and
from the definition of the semantics for path formulas.

For the case where f is a path formula of the form Xa
s g.:

A, p, e |ù Xa
s g

ðñ (by definition)
Di s.t., for every j ă i, aj “ τ , ai “ a and A, si`1, e |ù g

ðñ (p and q match)
Dl s.t., for every k ă l, bk “ τ , bl “ hΣpaq and A, tk`1, e |ù hpgq

ðñ (by definition)

B, q, e |ù X
hΣ
paq

s hpgq
ðñ (by definition)

B, q, e |ù hpXa
s gq

For the case where f is a path formula of the form g0 U g1:
A, p, e |ù g0 U g1

ðñ (by definition)
Di s.t. A, si, e |ù g1 ^ p@j s.t. j ă i, A, sj , e |ù g0q

ðñ (p and q match)
Dk s.t. B, tk, e |ù hpg1q ^ p@l s.t.l ă k,B, tl, e |ù hpg0qq

ðñ (by definition)
B, q, e |ù hpg0q U hpg1q

ðñ (by definition)
B, q, e |ù hpg0 U g1q

It remains to show that, by constructing a state formula from a path formula
that satisfies (**), the state formula obtained statisfies (*), and vice-versa. Let’s
procede by cases.

A path formula formed from a state formula can be obtained only by the

29

rule P1), and it is the very same state formula. This case is trivial.

Suppose f is a state formula of the form Eg, where g is a path formula.
A, s, e |ù Eg

ðñ (by definition)
D p fair fullpath starting at s s.t. A, p, e |ù g

ðñ (claim, proved below)
D q fair fullpath starting at t s.t. B, q, e |ù hpgq

ðñ (by definition)
B, t, e |ù Ehpgq

ðñ (by definition)
B, t, e |ù hpfq

Proof of the claim. Suppose there exists a fullpath p starting at s such
that A, p, e |ù g. The idea is to decompose this fullpath in a sequence of stut-
tering sequences tp0, p1, ..., pn, ...u (note that it can be a finite sequence). We
then proceed by recursion: by hypothesis, p0 P Stutterps, aq, and by point 2 (b
or c) of the definition of stuttering bisimulation, there is a stuttering sequence
q0 P Stutterpt, hΣpaqq such that p0 and q0 match. The matching of p0 and q0 also
implies that their last states, let’s call them s1 and t1 respectively, are related
by R. We can apply again point 2 of the definition of stuttering bisimulation
to p1 and so on, obtaining a sequence of stuttering sequences tq0, q1, ..., qn, ...u,
such that each qi matches with pi. It is straightforward to see that this means
that the path q, obtained by concatenating the pahts tq0, q1, ..., qn, ...u, matches
with p. By inductive hypothesis, we got the double implication.

The case where f has the form Ag follows by the remark that Ag is equiva-
lent to E g, so it is sufficient to apply the inductive hypothesis.

30

3.4 The Reduction Theorem

The Reduction Theorem is the key result to prove the existence of cut-offs,
because it permits to construct a stuttering bisimulation between quotients of
TPRs of different sizes. The theorem was proven by Emerson and Namjoshi
in [6] using block bisimulation. Here we present a proof that uses stuttering
bisimulation instead of block bisimulation.

Definition 3.4. (Intervals on a ring) ri : jsn denotes the set of indices on the
clockwise segment of a ring of size n starting from i and ending in j.
ri : jqn “ ri : jsnztju, pi : jsn “ ri : jsnztiu and pi : jqn “ ri : jsnzti, ju. If
i “ j, by convention ri, is “ rns and ri, iq “ pi, is “ pi, iq “ rnsztiu.

Theorem 3.2 (Reduction). For I Ď rns and J Ď rks sets of indices, let h :
I Ñ J be a bijection s.t. @i, j P I:

1. i ď j iff hpiq ď hpjq (where ď is the usual relation on N) 2

2. pi : jqn ‰ ∅ iff phpiq : hpjqqk ‰ ∅

Then Mn|I and Mk|J are stuttering equivalent.

Proof. For brevity, let’s call A :“ Mn|I and B :“ Mk|J . In order to prove the
theorem, we define a relation R on QA

Ů

QB and two bijective functions hΣ and
hL, and prove it is a stuttering bisimulation.

First note that all the actions in A have index in I and all the actions in B
have index in J , hence we have an inducted function hΣ : ΣA Ñ ΣB that is well-
defined. The same argument holds for the labels, hence we have an inducted
function hL : LA Ñ LB that is well-defined.

Let R be defined as follows: for every s P QA and for every t P QB , s R t iff:

1. The local state of the initial token distribution processes Dn and Dk are
the same, that is: either both are in the end state, or neither of them is
in the end state.

2. The state of the processes indexed by I is identical to the state of the
processes indexed by J , up to h. That is hLpλApsqq “ λBptq.

3. The token in s is at the process l P I iff the token in t is at the process
hplq.

4. The token in s is between process l and m iff the token in t is between
hplq and hpmq.

2Actually, given any order on I consistent with the direction of the ring Ringn (that is,
choosing an arbitrary minimum point and then ordering by following the clockwise verse), it
is sufficient to require that the order on J induced by h is consistent with the clockwise verse
of the ring Ringk. The point 1. above is the same as this condition after having chosen 0 as
arbitrary minimum point, but there is no actual need to do that, except for simplicity’s sake.
In practice, it is irrelevant which minimum point is chosen, and the proof holds as well with
the condition as written in this note.

31

Now let’s prove that R is a stuttering bisimulation. Suppose that s R t,
where s is a state in Mn|I and t is a state in Mk|J .

It is trivial to see that any initial state of A is related to any initial state of
B by R, hence point 1. of the definition of stuttering bisimilation is satisfied.

By definition of R (point 2), we have that hLpλApsqq “ λBptq, so point 2.a
of the definition of stuttering bisimulation is satisfied.

Now note that there can’t be infinite stuttering sequences due to fairness
conditions: the token has to be passed eventually, which means that, since the
ring is finite, every process will receive the token eventually (in particular some
process indexed by I will receive it), so silent transitions cannot succeed forever.
This means that Stutterps, Infq “ H, hence point 2.c is checked.

It remains just to show point 2.b: for every path p P Stutterps, aq, we need
to find a path q P Stutterpt, hΣpaqq s.t. p and q match by R. So let’s consider a
path p. The last transition of p has to be a non silent transition, i.e. it has to
involve a process i P I, i.e. it could be either an internal transition of process i,
or the process i sending the token, or the process i receiving the token (either
from the initial distributor process Dn or from another process).

Before proceeding case by case, let’s note that every state on the path p
except the final one is related to t by R: in fact, the four conditions of the
definition of R hold up to silent transitions. This means that we are on the
right path to construct two partitions of p and q: we have a segment pp1q “
ps, s1, s2, ..., sn´1q and a segment qp1q “ ptq s.t. every state of pp1q is related to
every state of qp1q. It remains to find an another segment qp2q s.t. every state
in it matches with pp2q “ psnq. Let’s consider the different cases:

• Internal move: a “ ai. Since the state of the processes indexed by i and
hpiq are identical (by point 2 of the def. of R), it is possible to apply the
transition ahpiq to t. The state obtained is clearly related to sn by R.

• Sending the token: a “ psndi, rcvi`1q. Since the state of the processes
indexed by i and hpiq (and by i ` 1 and hpiq ` 1) are identical, it is
possible to apply the action psndhpiq, rcvhpiq`1q in t, and the state obtained
is related to sn by R.

• Receiving the token from another process: a “ psndi´1, rcviq (it is neces-
sary to analyze this case only if i ´ 1 R I, otherwise it has been already
considered in the previous case). Since the action is not silent, the token
has to be in pk : iq for some k P I. Since s R t, by point 4 of the definition,
the other token is at j P phpkq : hpiqq. If j “ hpiq ´ 1 it means that the
process hpiq ´ 1 can send the token and we are done, since it is possible
to apply psndhpiq´1, rcvhpiqq.
Otherwise, by fairness conditions, the token has to be passed, step by
step, from j to hpiq ´ 1 (this is possible since k ă i implies hpkq ă hpiq).
Doing so involves only silent transitions, thus we can put these states in
the segment qp1q, since they are all related to s (and to s1,...,sn´1) by R.
After these transitions, it is possible to apply psndhpiq´1, rcvhpiqq.

32

• Receiving the token from the initial distribution process: a “ pinit sndi, rcviq.
If i P I, let the first transition of t be the token assignment to hpiq, so a
matching path is found. If i R I, there exists a pair k, l P I s.t. i P pk : lq
and pk : lq does not contain any index of I. By property of h, phpkq, hplqq
is not empty, let’s say it contains z, and let the first transition of t be the
token assignment to z: a matching path is found.

33

4 Decidability results for token-passing rings

Working with rings composed by a variable number of processes, it can be
very useful to verify properties that hold independently from the number of
processes. In order to study this question in a formal framework, we need to
introduce the notion of parameterized model-checking problem.

4.1 Parameterized model-checking problem

Let’s consider a sequence of LTSs A “ pA1, A2, ...q, where each An is a
composite LTS of the form An “ Bn1

|| ... ||Bnkn
built from d process templates,

i.e. there exist d LTS P1, ... , Pd such that for every n P N and for every j P rkns,
there exists a l P rds such that Bnj is isomorphic Pl.

From this sequence A, we can construct a sequence G “ pG1, G2, ...q of
d-colored graph, where, for every n P N, Gn is the graph associated to An,
similarly to what done in section 2.4: Gn “ pVn, En, typenq is defined as:

- Vn “ t1, ..., knu

- typenpiq “ l iff Bni is isomorphic to Pl.

- pi, jq P En iff ΣAn
contains a synchronized action between Bni

and Bnj
.

Given a finite set of LTSs P “ tP1, ... , Pdu (seen as process templates),
a sequence of LTSs A defined as above, a fragment F of the indexed temporal
logic ICTL˚zX over a set of atomic propositions AP , we can have the following
definitions.

Definition 4.1 (Parameterized model-checking problem). The parameterized
model-checking problem for pP,A,Fq, abbreviated as PMCP pP,A,Fq is de-
fined as:

• Input. A formula f P F .

• Output. ”Yes” if An |ù f for every n P N, ”No” otherwise.

It is now possible to define what is a cutoff for a parameterized model-
checking problem.

Definition 4.2 (Cutoff). We say that m P N is a cutoff for pP,A,Fq if:

@f P F : p@n P N An |ù f iff @n ă m An |ù fq

When P and A are clear, it can be said that m is a cutoff for F .
Showing a cutoff for a parameterized model-checking problem is a very useful
technique for proving the decidability of a PMCP. In fact we have the following
result:

34

Proposition 3. If pP,A,Fq has a cutoff, then PMCP pP,A,Fq is decidable.

Proof. Let m be a cutoff for pP,A,Fq, i.e. @f P F : p@n P N An |ù f iff @n ă
m An |ù fq. We can construct the following algorithm: given f P F , output
”Yes” if for every n ă m it holds that An |ù f , output ”No” otherwise. This is
a solving algorithm for PMCP pP,A,Fq.

35

4.2 Cutoff theorems

For particular fragments of ICTL*\X there are important cut-offs results on
TPRs. Some of the most useful state that:

- The fragment tp@i : gpiqq | gpiq does not contain index quantifiersu has a
cutoff of 2

- The fragment tp@i : gpi, i`1qq | gpi, i`1q does not contain index quantifiersu
has a cutoff of 3

- The fragment tp@i, j : j ‰ i : gpi, jqq | gpi, jq does not contain index quantifiersu
has a cutoff of 4

- The fragment tp@i, j : j ‰ i : gpi, i`1, jqq | gpi, i`1, jq does not contain index quantifiersu
has a cutoff of 5

Let’s prove them in order.

Lemma 4.1. Fixed an initial state s0, then Mn, s
0 |ù p@i : gpiqq iff

Mn, s
0 |ù gp0q, where gpiq is a ICTL˚ΣzX formula not containing index quanti-

fiers.

Proof. We have the following chain:
Mn, s

0 |ù gp0q
ðñ (definition)

Mn, s
0, e |ù gpiq holds for every valuation e that maps i to 0

ðñ (since g(i) has no index quantifiers, it does not distinguish between the
process indexed by 0 and the processes indexed by other indices. Thanks to the
symmetry of the system, we can extend the proposition to every valuation)

Mn, s
0, e |ù gpiq holds for every valuation e

ðñ (definition)
Mn, s

0, e |ù @i.gpiq holds for every valuation e
ðñ (definition)

Mn, s
0 |ù @i.gpiq

Theorem 4.2. For every ICTL˚ΣzX formula f ” p@i : gpiqq where gpiq does
not contain index quantifiers, and for every n P N s.t. n ě 2, then Mn, s

0
n |ù f

iff M2, s
0
2 |ù f .

Proof. We have the following chain:

Mn, s
0
n |ù f

p1q
ðñ Mn, s

0
n |ù gp0q

p2q
ðñ Mn|0, s

0
n |ù gp0q

p3q
ðñ M2|0, s

0
2 |ù gp0q

36

p4q
ðñ M2, s

0
2 |ù gp0q

p5q
ðñ M2, s

0
2 |ù f

(1) The initial state is symmetric due to the very definition of the system, so
it is possible to apply the previous lemma.

(2) gp0q refers only to propositions indexed by 0.

(3) It is possible to apply the Reduction Theorem with h : 0 ÞÑ 0, noting
that it satisfies the conditions required in the hypothesis. It follows that
Mn|0 and M2|0 are stuttering equivalent. In particular, the stuttering
bisimulation R constructed in the proof is such that s0

n is related to s0
2 by

R. Thus, it possible to apply Theorem 3.1. Noting that hpgp0q “ gp0q, we
obtain the double implication.

(4) gp0q refers only to propositions indexed by 0.

(5) By previous lemma.

Lemma 4.3. Fixed an initial state s0, then Mn, s
0 |ù p@i : gpi, i` 1qq iff

Mn, s
0 |ù gp0, 1q, where gpi, i` 1q is a ICTL˚ΣzX formula not containing index

quantifiers.

Proof. The proof is very similar to the one of the previous lemma. We have the
following chain:

Mn, s
0 |ù gp0, 1q

ðñ (definition)
Mn, s

0, e |ù gpi, i` 1q holds for every valuation e that maps i to 0
ðñ (symmetry)

Mn, s
0, e |ù gpi, i` 1q holds for every valuation e

ðñ (definition)
Mn, s

0, e |ù @i.gpi, i` 1q holds for every valuation e
ðñ (definition)

Mn, s
0 |ù @i.gpi, i` 1q

Theorem 4.4. For every ICTL˚ΣzX formula f of the form p@i : gpi, i ` 1qq
where g does not contain index quantifiers, and for every n P N s.t. n ě 3, then
Mn, s

0
n |ù f iff M3, s

0
3 |ù f .

Proof. We have the following chain:

Mn, s
0
n |ù gpi, i` 1q

p1q
ðñ Mn, s

0
n |ù gp0, 1q

p2q
ðñ Mn|t0,1u, s

0
n |ù gp0, 1q

37

p3q
ðñ M3|t0,1u, s

0
3 |ù gp0, 1q

p4q
ðñ M3, s

0
3 |ù gp0, 1q

p5q
ðñ M3, s

0
3 |ù gpi, i` 1q

(1) The initial state is symmetric due to the very definition of the system, so
it is possible to apply the previous lemma.

(2) gp0, 1q refers only to propositions indexed by 0 and by 1.

(3) It is possible to apply the Reduction Theorem with h : t0, 1u Ñ t0, 1u such
that hp0q “ 0 and hp1q “ 1, noting that it satisfies the conditions required
in the hypothesis. It follows that Mn|t0,1u and M3|t0,1u are stuttering
equivalent. In particular, the stuttering bisimulation R constructed in
the proof is such that s0

n is related to s0
3 by R. Thus, it possible to

apply Theorem 3.1. Noting that hpgp0, 1q “ gp0, 1q, we obtain the double
implication.

(4) gp0, 1q refers only to propositions indexed by 0 and by 1.

(5) By previous lemma.

Lemma 4.5. Fixed an initial state s0, then Mn, s
0 |ù p@i, j : i ‰ j : gpi, jqq iff

Mn, s
0 |ù @j : gp0, jq, where gpi, jq is a ICTL˚ΣzX formula not containing index

quantifiers.

Proof. We have the following chain:
Mn, s

0 |ù @j : gp0, jq
ðñ (definition)

Mn, s
0, e |ù @j : gpi, jq holds for every valuation e that maps i to 0

ðñ (symmetry)
Mn, s

0, e |ù @j : gpi, jq holds for every valuation e
ðñ (definition)

Mn, s
0, e |ù @i, j : i ‰ j : gpi, jq holds for every valuation e

ðñ (definition)
Mn, s

0 |ù @i, j : i ‰ j : gpi, jq

38

Lemma 4.6. For n ě 4:

a) Mn|p0,1q „M4|p0,1q

b) Mn|p0,n´1q „M4|p0,3q

c) Mn|p0,jq „M4|p0,2q for j R t0, 1, n´ 1u

Proof. This is a straightforward application of the Reduction Theorem.

In fact, let h : rns Ñ r4s be defined by: hpjq “

$

’

’

’

&

’

’

’

%

0, if j “ 0

1, if j “ 1

3, if j “ n´ 1

2, otherwise

.

To prove point a), it suffices to apply the Reduction Theorem with h restricted
to t0, 1u, whereas for b) it can be applied with h restricted to t0, n ´ 1u. In
order to prove c), for every j R t0, 1, n ´ 1u, the stuttering equivalence follows
by the Reduction Theorem with h restricted to t0, ju each time.

Theorem 4.7. For every ICTL˚ΣzX formula f of the form p@i, j : i ‰ j :
gpi, jqq where g does not contain index quantifiers, and for every n P N s.t.
n ě 4, then Mn, s

0
n |ù f iff M4, s

0
4 |ù f .

Proof. We can proceed in a way similar to the previous theorems, but we need
to do an observation first. By a reasoning analogous to the one of Lemma 4.1,
we can instantiate the first index quantifier i to 0, for a symmetry argument.
But it is not possible do to that for the second index quantifier j too. In fact,
fixing an evaluation e, the positions that ep0q and epjq assume can be of three
different types:

• ep0q is the successor of epjq

• ep0q is the predecessor of epjq

• ep0q and epjq are not adjacent

This three cases are significantly different one from the other. In fact, in the
first case there is an action sending the token from ep0q to epjq, in the second an
action sending the token from epjq to ep0q, and in the third no token exchange
between the two processes. This suggests that a system composed by 3 pro-
cesses will not be able to cover all the formulas of the form in the hypothesis,
while a system composed by 4 processes will do it: the processes indexed by
0, 1 and n´ 1 do not change, while all the processes indexed by 2, ..., n´ 2 are
simulated by a single processes, indexed by 2.

39

Similarly to what done before, we have the following chain:
Mn, s

0 |ù p@i, j : i ‰ j : gpi, jqq
ðñ (Lemma 4.5)

Mn, s
0 |ù p@j : j ‰ 0 : gp0, jqq

ðñ (By the definition, we can split the cases. Note that doing so is possible
only due to the observation preceding the chain)

Mn, s
0 |ù pgp0, 1qq ^

Mn, s
0 |ù pgp0, n´ 1qq ^

Mn, s
0 |ù p@j : j R t0, 1, n´ 1u : gp0, jqq

ðñ (Lemma 4.6)
M4, s

0 |ù pgp0, 1qq ^
M4, s

0 |ù pgp0, 3qq ^
M4, s

0 |ù pgp0, 2qq
ðñ (By the definition, we can merge the cases. Note that doing so is possible
only due to the observation preceding the chain)

M4, s
0 |ù p@j : j ‰ 0 : gp0, jqq

ðñ (Lemma 4.5)
M4, s

0 |ù p@i, j : i ‰ j : gpi, jqq

Lemma 4.8. Fixed an initial state s0, then

Mn, s
0 |ù p@i, j : neqpi, i` 1, jq : gpi, i` 1, jqq

iff

Mn, s
0 |ù p@j : neqp0, 1, jq : gp0, 1, jqq

where gpi, i` 1, jq is a ICTL˚ΣzX formula not containing index quantifiers.

Proof. We have the following chain:
Mn, s

0 |ù p@j : neqp0, 1, jq : gp0, 1, jqq
ðñ (definition)

Mn, s
0, e |ù p@j : neqp0, 1, jq : gp0, 1, jqq holds for every valuation e that

maps i to 0 and epjq ‰ 0 and epjq ‰ 1
ðñ (symmetry)

Mn, s
0, e |ù p@j : neqpi, i ` 1, jq : gpi, i ` 1, jqq holds for every valuation e

such that epiq ‰ epjq and epi` 1q ‰ epjq
ðñ (definition)

Mn, s
0, e |ù p@i, j : neqpi, i ` 1, jq : gpi, i ` 1, jqq holds for every valuation e

such that epiq ‰ epjq and epi` 1q ‰ epjq
ðñ (definition)

Mn, s
0 |ù p@i, j : neqpi, i` 1, jq : gpi, i` 1, jqq

40

Lemma 4.9. For n ě 5:

a) Mn|p0,1,2q „M5|p0,1,2q

b) Mn|p0,1,n´1q „M5|p0,1,n´1q

c) Mn|p0,1,jq „M5|p0,1,3q for j R t0, 1, 2, n´ 1u

Proof. The proof is analogous to the one of Lemma 4.6, i.e. a straightforward
application of the Reduction Theorem. Let h : rns Ñ r5s be defined by:

hpjq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0, if j “ 0

1, if j “ 1

2, if j “ 2

4, if j “ n´ 1

3, otherwise

.

Each point is proved by applying the Reduction Theorem with h restricted to
the triple involved.

Theorem 4.10. For every ICTL˚ΣzX formula f of the form p@i, j : neqpi, i`
1, jq : gpi, i ` 1, jqq where g does not contain index quantifiers, and for every
n P N s.t. n ě 5, then Mn, s

0
n |ù f iff M5, s

0
5 |ù f .

Proof. The idea is very similar to the one of Theorem 4.7. First, we instantiate
the first index quantifier i to 0 (and i` 1 to 1, accordingly). Second, fixing an
evaluation e, the positions that epjq can assume are of three different types:

• epjq is the successor of ep1q

• epjq is the predecessor of ep0q

• epjq is not adjacent with neither ep1q nor ep0q

Again, we can construct from Mn a system composed by 5 processes, where the
processes indexed by 0, 1, 2 and n ´ 1 do not change, while all the processes
indexed by 3, ..., n´ 2 are simulated by a single processes, indexed by 3.

So we have the following chain:

Mn, s
0 |ù p@i, j : neqpi, i` 1, jq : gpi, i` 1, jqq

ðñ (Lemma 4.8)
Mn, s

0 |ù p@j : neqp0, 1, jq : gp0, 1, jqq
ðñ (By the definition, we can split the cases. Note that doing so is possible
only due to the observation preceding the chain)

Mn, s
0 |ù pgp0, 1, 2qq ^

Mn, s
0 |ù pgp0, 1, n´ 1qq ^

41

Mn, s
0 |ù p@j : j R t0, 1, 2, n´ 1u : gp0, 1, jqq

ðñ (Lemma 4.9)
M5, s

0 |ù pgp0, 1, 2qq ^
M5, s

0 |ù pgp0, 1, 4qq ^
M5, s

0 |ù pgp0, 1, 3qq
ðñ (By the definition, we can merge the cases. Note that doing so is possible
only due to the observation preceding the chain)

M5, s
0 |ù p@j : neqp0, 1, jq : gp0, 1, jqq

ðñ (Lemma 4.5)
M5, s

0 |ù p@i, j : neqpi, i` 1, jq : gpi, i` 1, jqq

42

4.3 Overview over more general (un)decidability results

In 2014, Aminof et al.[1] proved a decidability result for token passing rings
for CTL*\X formulas with only universal or only existential quantifiers. For a
formula indexed over k index variables, the cut-off is 2k.

In 2004, Clarke et al.[4] proved a decidability result for token passing rings
for formulas in LTL\X, using the decomposition technique.

It is possible to permit to the token to take multiple values, but this quickly
leads to undecidability. Indeed, even the safety fragment of LTL\X is undecid-
able, as proven by Emerson and Namjoshi in 2003[6].

It is possible to extend the notion of token passing ring to a generic graph.
Doing so, it arises the possibility for a process to send (receive) the token to
(from) two or more other processes. When this possibility is denied, i.e. every
process can send (receive) only to (from) a process, we talk about direction-
unaware TPS, otherwise about direction-aware TPS.

In 2014, Aminof et al. proved an undecidability result for direction-aware
token passing systems for formulas in LTL\X.

A complete overview over decidability and undecidability results can be
found in ”Decidability of Parameterized Verification”[2].

43

4.4 Applications

Token-passing rings have proved to be a very powerful way to handle the
communication in computer networks. In fact, there is a wide variety of appli-
cations that find the token-passing ring structure to be very suitable.

For examples, token-passing rings are used by several protocols for mutual
exclusion, which strongly benefit from the ring structure in terms of safety.
Among these protocols, one of the most well-known is Milner’s scheduler pro-
tocol [10].

Milner’s scheduler protocol consists of a certain number of processes
arranged on a ring, each of which has to accomplish a task. In order to activate
the task, a process needs to have the token. After the activation, it sends the
token clockwise to another process, and then starts working on the task. It can
receive again the token either before or after completing the task. After having
completed a task, it can activate a new task, provided it holds the token.

It is clear that Milner’s scheduler protocol can be seen as a composed LTS of
the form Mn constructed as in section 3.1, where the base template process P is
defined as follows. The process can be in an initial state in, a ”task activation”
state a, a ”working on the task” state w, or a ”completing the task” state c,
and in each state - except for the task activation state - it can have the token
(noted with the subscript T) or not (noted with the subscript N). Formally, we
define it as:

• Q “ tinN , inT , aT , cN , cT , wN , wT u

• I “ tinNu

• Σ “ trcv, snd, act, compl, τu

• δ is formed by the following transitions:

- rcv: inN
rcv
ÝÝÑ inT , cN

rcv
ÝÝÑ inT , wN

rcv
ÝÝÑ wT

- snd: aT
snd
ÝÝÑ wN

- act: inT
act
ÝÝÑ aT

- compl: wN
compl
ÝÝÝÝÑ cN wT

compl
ÝÝÝÝÑ cT

- τ : cT
τ
ÝÑ inT (besides the transitions of the form q

τ
ÝÑ q

for every q P Q)

• L and λ are constructed in the usual way for Kripke structures

Being the number of processes variable, it is clear that, if we are interested
in proving general properties of Milner’s scheduler protocol, we are facing a
parameterized model checking problem.
Let’s say, for example, that we want to check that every process, in order to

44

inNstart inT aT wN

cN

wTcT

rcv act snd

rcv

complrcv

compl

τ

Figure 1: Milner’s scheduler protocol. In red the states having the token.

activate a task, must have completed the task previously. This property can be
expressed by the ICTL˚ΣzX formula

@i : AGpai Ñ pai Uw ai Uw ciqq

In order to verify this specification in a system composed by an arbitrary num-
ber of processes, thanks to Theorem 4.2, it suffices to verify it in a system of
size 2.

Another example of application is the problem of Leader election in a
synchronous ring [9]. The problem consists, having a certain number of pro-
cesses disposed on a ring, in deciding which of them has to be the ”leader”, i.e.
which of them can initiate the communication.

In order to prevent two processes from communicating simultaneously, risk-
ing to interfere with each other and losing information, it is very important to
have a clear procedure to decide which of them has the right to start the com-
munication. Moreover, in a token-passing system, it can happen that the token
gets lost, and the process to regenerate it is equivalent to electing a leader.

One idea to construct a system for the leader election is as follows. We sup-
pose that every process has an unique identifier (UID), represented as a natural
number, and it sends it around the ring. Then, when it receives an incoming
UID, it checks whether it is greater than its own (in this case it keeps passing
it), less than its own (in this case it passes its UID), or equal (in this case it
proclames itself to be the leader). This algorithm can be viewed as an LTS, and
the system as a token-passing ring

45

Part II

Token-Passing Rings as
array-based systems

5 System description

5.1 Preliminaries

We work in first-order logic, and assume the usual notions of signature (re-
quiring it includes the equality), terms, formulas, ground formulas, quantifier
free formulas, interpretations, etc.

For Σ a signature and x a finite set of variables, with tpxq we indicate a term
in which at most the variables in x are free, and with φpxq we indicate a formula
in which at most the variables in x are free.

By saying that a formula φpxq is satisfiable we mean that its existential
closure is satisfiable, and by saying that it is valid we mean that its universal
closure is valid.

Definition 5.1 (Substructure). Given a Σ-structure M “ pM, Iq, we say that
M1 “ pM 1, I 1q is a Σ-substructure of M if M 1 Ď M and I 1 is obtained from I
by restriction.

Definition 5.2 (Substructure generated by a subset). The Σ-structure gener-
ated by a subset X of M is the smallest Σ-substructure of M whose domain
contains X. In case the Σ-structure generated by X is the whole M, it is said
that X generates M.

Definition 5.3 (Theory). Given a signature Σ and a class of Σ-structures C,
we say that the pair pΣ, Cq is a theory, and the structures in C are said models
of the theory 3.

Definition 5.4 (Closure under substructures). A class of structures C is closed
under substructures if, for every M P C, every N isomorphic to a substructure
of M is in C.

Definition 5.5 (T-satisfiability). Given a theory T , a formula φ is said T ´
satisfiable iff there exists a model M of T and an assignment a to the free
variables of φ making φ true in M under a. It is said T ´ valid it is valid in
all the models of T .

Definition 5.6 (T-equivalence). Given a theory T , we say that two formulas φ
and ψ are T -equivalent if T |ù @xpφpxq Ø ψpxqq

3Note that this is the definition in the SMT-formalism, while the usual theory definition
is quite different.

46

Definition 5.7 (Quantifier elimination). A theory admits quantifier elimination
iff for every formula φpxq there exists a quantifier-free formula φ1pxq which is
T -equivalent to φpxq.

In an applications-oriented context like ours, we require φ1pxq to be com-
putable.

Definition 5.8 (Locally finiteness). A theory T “ pΣ, Cq is locally finite iff
Σ is finite and for every set of variables x there are finitely many Σpxq-terms
t1, ..., tk s. t. for every other term u, there exists i P rks such that T |ù u “ ti.
The terms t1, ..., tk are called Σpxq-representative terms.

Definition 5.9 (Effectively locally finiteness). A theory T “ pΣ, Cq is effectively
locally finite iff it is locally finite and its representative terms are effectively
computable from pxq

Definition 5.10 (T-partition). Given a theory T , a T -partition is a finite set
of quantifier-free formulas C1pxq, ¨ ¨ ¨ , Cnpxq such that T |ù @x

Žn
i“1 Cipxq and

T |ù
Ź

i‰j @x ‰ pCipxq ^ Cjpxqq.

Definition 5.11 (Case-definable extension). Given a theory T “ pΣ, Cq, a case-
definable extension T 1 “ pΣ1, C1q is an extention obtained form T by applying
finitely many times the following procedure:

(i) Take a T -partition C1pxq, ¨ ¨ ¨ , Cnpxq and the Σ-terms t1pxq, ¨ ¨ ¨ , tnpxq.

(ii) Define Σ1 “ ΣYtF u where F R Σ and the arity of F is equal to the length
of x

(iii) Let C1 be the class of Σ1-structures M such that its Σ-reduct is a model of
T and such that M |ù

Źn
i“1 @xpCipxq Ñ F pxq “ tipxqq

These new function symbols are called case-defined functions.

Definition 5.12 (Enumerate data-type theory). An enumerated data-type the-
ory T is a theory whose class of models contains exactly one finite Σ-structure
M “ pM, Iq such that for every m PM there exists a constant c P Σ such that
cI “ m.

47

5.2 Array-based systems

Definition 5.13. An index theory TI “ pΣI , CIq is a mono-sorted theory (let’s
call its sort INDEX) which is closed under substructures and whose fragment
formed by only quantifier free formulas is decidable for TI-satisfiability.

Definition 5.14. An element theory TE is a multi-sorted theory which admits
quantifier elimination and whose fragment formed by only quantifier free formu-
las is decidable for TE-satisfiability.

Given an index theory TIpΣI , CIq and an element theory TE , we can con-
struct a third theory AEI “ pΣ, Cq having three sort symbols: INDEX, ELEM,
and ARRAY. Σ contains all the symbols in ΣI and all the symbols in ΣE , plus
a binary function symbol apply having sort ARRAY, INDEX Ñ ELEM (instead of
applypa, iq we will use the more array-style like notation aris). The class C con-
tains exactly the three-sorted structures M “ pINDEXM, ELEMM, ARRAYM, Iq
such that ARRAYM is the set of functions from INDEXM to ELEMM, the function
symbol apply is interpreted as a function application, and pINDEXM, I|ΣI

q and

pELEMM, I|ΣE
q are models of TI and TE , respectively. By MI (resp. ME) we

will indicate pINDEXM, I|ΣI
q (resp. pELEMM, I|ΣE

q)

Definition 5.15 (Array-based system). An array-based system for an index
theory TI and an element theory TE is a triple S “ pa, I, τq, where:

• a is a tuple of variables of sort ARRAY (these variables are called state
variables)

• Ipaq is a σpaq-formula (called the initial state formula)

• τpa, a1q is a Σpa, a1q-formula, where a1 is a renamed copy of the tuple a
(this formula is called the transition formula)

48

5.3 Backward reachability

In this section we assume that Ipaq is a formula of the form @i.φpi, arisq
(shorthand: Ipaq is a @I -formula) and that τpa, a1q is in functional form, i.e. it is
a disjunction of formulas of the form DipφLpi, arisq^@j : a1rjs “ FGpi, aris, j, arjsq
where φL (called guard) is quantifier-free and FG is a case-defined function.

Definition 5.16 (Safety problem). Given an array-based system S “ pa, I, τq
and an DI-formula Upaq, an instance of the safety problem is to establish if the
formula

Ipa0q ^ τpa0, a1q ^ ¨ ¨ ¨ ^ τpan´1, anq ^ Upanq

is AEI -satisfiable for some natural number n.

We say that S is safe w.r.t. Upaq if there is no such n, otherwise it is unsafe.

Definition 5.17 (n-pre-image). Given n ě 0 and a formula Kpaq, the n-pre-
image of Kpaq is inductively defined as follows:

Pre0pτ,Kq := K

Pren`1pτ,Kq :“ Prepτ, Prenpτ,Kqq

where
Prepτ,Kq :“ Da1.pτpa, a1q ^Kpa1qq

Given an array-based system S “ pa, I, τq and a formula Upaq, the formula
Prenpτ,Kq describes the set of states that are backward reachable in n steps.
To check if U is safe, we use the backward reachability algorithm (BReach).

At the end of n-th iteration, BReach stores the formulaBRnpτ, Uq :“
Žn
i“0 Pre

ipτ, Uq

Algorithm 1: BReach

input: (U : DI -formula)

P Ð U ;
B Ð K ;

while (P ^ B is AEI -sat) do
if (I ^ P is AEI -sat) then

return unsafe;
end
B Ð P _B;
P Ð Prepτ, P q

end
return (safe,B)

49

in the variableB, that hence contains exactly the states that are backward reach-
able from the states in U in at most n steps, while the formula Pren`1pτ, Uq
is stored in P . If at some point I ^ P is AEI -sat (i.e. I ^ Prenpτ, Uq is satis-
fiable in AEI) the algorithm gives an unsat output. Moreover, at every steps it
checks if a fix-point has been reached, since (P ^ B is AEI -sat) is false if and
only if BRn`1pτ, Uq Ñ BRnpτ, Uq is valid in AEI . If the algorithm terminates,
the variable B expresses the formula that describes the set of states which are
backward reachable form U , that is a fix-point.

In order for BReach to be a true procedure, we need to check that:

(i) DI -formulas are closed under pre-image

(ii) The AEI -satisfiability test for safety and the AEI -satisfiability test for fix-
point are effective

For (i), it suffices to use the following result:

Proposition 4. Given a formula Kpaq of the form Dkφpk, arksq and τpa, a1q :“
Žm
h“1 Dipφ

h
Lpi, arisq^a

1 “ λj.FhGpi, aris, j, arjsqq, then Prepτ,Kq is AEI -equivalent
to an effective computable DI-formula.

Proof. In [7] section 3.2.

For (ii), we need a decidability procedure for the fragment D˚@˚. The existence
of this procedure strongly depends on the index theory used.

50

5.4 Formalization of token-passing rings

Now we want to formalize token-passing rings as array-based systems. The
index theory TI is the theory of finite rings.

The theory of finite rings is defined as follows:

• Signature Σ:

– function symbols: s, p (both of arity 1)

– predicate symbols: “

• Class of Σ-structures: It contains every structure of the form pt1, ..., nu, Iq
such that:

– n P N´ t0u
– sIpiq ” i` 1 mod n

– pI ” i´ 1 mod n

The elements theory TE is a multi-sorted theory, having the two enumerated
sorts Bool “ t0, 1u and States “ tq0, ¨ ¨ ¨ , qnu. Hence, the two array variables
are:

• tok : INDEXÑ t0, 1u

• a : INDEXÑ tq0 ¨ ¨ ¨ , qnu

where tokris “ 1 means that i has the token and q0, ..., qn are the internal states.

We can now express the initial state assignment with the formula

I : @i paris “ q0 ^ tokris “ 0q

and the transitions with the formula

τ : Di1, ¨ ¨ ¨ , Dik

˜

Guardpi1, ¨ ¨ ¨ , ikq ^

λjUpdatepj, i1, ¨ ¨ ¨ , ikqq

¸

where Update is a function dependent only by i1, ¨ ¨ ¨ , ik that assigns univocally
the values of a1rjs and tok1rjs and that is expressed as an exclusive disjunction of
cases where each case is a quantifier-free formula. Moreover, Update is required
to assign the token to exactly one process.

We have now defined an array-based system for token-passing rings. We
would like to implement a procedure for backward reachability to test safety
properties. However, in order to do so, we need first to establish a decidability

51

procedure for the fragment D˚@˚ of the theory of arrays over finite rings.
This will be done in two ways: first by translating the problem into a S1S

problem, secondly using a direct approach. The rest of the thesis is dedicated
to prove the decidability of this fragment.

Given these results, the Algorithm BReach is proven to be an effective pro-
cedure for solving safety problems. However, we have not shown that the algo-
rithm terminates. In [7], termination is obtained by imposing model-theoretic
conditions on T IE , but these conditions do not hold for arrays over finite rings.

A future development of this project would be to find suitable conditions,
possibly by taking inspiration from the cut-offs technique treated in the first
part of the thesis.

52

6 Theory of arrays over finite rings and MSOL

Second-order logic is an extension of first-order logic which gives the possi-
bility to quantify over relations.

Monadic second-order logic (MSOL) is a restriction of second-order logic,
which allows second-order quantifiers only over unary relation (i.e. sets). Two
important theories are S2S and S1S. While S2S is defined over infinite binary
trees having a successor function of arity two, S1S is defined over natural num-
bers with the usual 1-arity successor function.

Since we are dealing with directed rings, i.e. graphs where every vertex has
only one predecessor and one successor (plus a modular structure that we will
see later how to treat), S1S seems to be a good choice for encoding the theory
of arrays over finite rings in MSOL, being expressive enough4.

6.1 Introduction of S1S

S1S is the second-order logic interpreted on the naturals, having the constant
0, the successor function symbol s5, and only unary predicate variables.

Formally:

• If x is a first-order variable and P is a second-order variable, then P pxq is
a formula

• If x and y are first-order variables, then x “ y and succpx, yq are formulas

• If φ and ψ are formulas, then φ^ ψ, φ_ ψ, and φ are formulas

• If x is a first-order variable and φ is a formula, then Dxφ is a formula

• If P is a second-order variable and φ is a formula, then DPφ is a formula

Note: in the definition above, we are treating the successor s as a 2-arity predi-
cate. However, in order to use a notation more similar to the one of the previous
chapters, we would like to write spxq “ y instead of succpx, yq, i.e. expressing
the successor as a 1-arity function. So we will do, since the formulas expressible
in the two languages are the same[11].

Given a finite number of second-order variables P1, ¨ ¨ ¨ , PN , an assignment
σ is a function that maps every Pi into σpPiq Ď N.
Now we introduce the Büchi automata, that play an important role in showing
a decidability procedure for S1S.

4For an extensive description of the properties of S1S and S2S, we refer to [8] (which also
provides a theoretical framework for SMOL)

5The successor function could be avoided by introducing a 2-arity predicate symbol S,
interpreted as Spx, yq : ðñ spxq “ y. However, these two languages are interchangable.

53

Definition 6.1 (Büchi automaton). A Büchi automaton is a 5-tuple A “

pΣ, Q, qI , δ, F q where

• Σ is a finite set, called alphabet of A

• Q is a finite set, called set of the states of A

• qI P Q is the initial state of A

• δ : Σ
Ś

QÑ PpQq is the transition of A

• F Ď Q is the set of final states of A

Definition 6.2 (Run). Given a ω-word σ P Σω, a run over σ is an infinite
sequence of states

ρ “ ρp0q, ρp1q, ...

such that ρp0q “ qI and ρpi` 1q P δpσpiq, ρpiqq for every i P N.

Definition 6.3 (Acceptance). A is said to accept a run ρ iff there exists q P F
such that q occurs infinitely many times in ρp0q, ρp1q,

Given a Büchi automaton A, with LpAq we indicate the ω-language includ-
ing exactly the infinite words of Σω that are accepted by A. It can be proved
that checking if LpAq “ ∅ is in NLOGSPACE.

Büchi automata and S1S are connected by the following theorem:

Theorem 6.1. Given a formula φ in S1S, there exists a Büchi automaton Aφ
such that φ is satisfiable in N if and only if LpAφq ‰ ∅.

A detailed proof can be found in [8]. This results implies that S1S is decid-
able.

54

6.2 Encoding the theory of arrays over finite rings into
S1S

First, we apply the following rules:

- For all variables x and y and n ą 0, snpspxqq “ y is replaced by @wpspxq “
w Ñ snpwq “ yq

- For all x and n ą 0, arsnpxqs “ ek is replaced by @wpspxq “ w Ñ

arsn´1pwqs “ ekq

By applying these rules, we obtain a formula containing at most first-grade
powers of the successor function symbol s.

Now, a model for the theory of arrays over finite rings is a finite ring of
dimension d in which every vertex has a value ek P te1, ¨ ¨ ¨ , eneu. The cen-
tral idea of the encoding is to express this model as a subset of N of the form
t0, 1, ¨ ¨ ¨ , Nu (with N “ k ´ 1) having a partition tC1, ¨ ¨ ¨ , Cne

u, where n P Ci
represent that arns “ ei, and where the successor of N is 0.

First, note that, by using the heterodox definition of theory given in 5.3, we
are implicitly stating that a formula is satisfiable iff there exists an N P N

We define a translation τ that maps a formula φ of the theory of arrays over
finite rings into a formula τpφq of S1S. First, we inductively define a partial
translation τ 1 as follows:

• τ 1 : spx1q “ x2 ÞÑ px1 ă N ^ x2 “ spx1qq _ px1 “ N ^ x2 “ 0q

• τ 1 : arxs “ ej ÞÑ Cjpxq

• τ 1 : @xφ ÞÑ @x ď N : τ 1pφq, where φ does not contain existential
quantifiers

• τ 1 : Dyφ ÞÑ Dy ď N : τ 1pφq

Then:

τ : φ ÞÑ DN ą 0 :
`

DC1 ¨ ¨ ¨ DCne : PartitionN pC1, ¨ ¨ ¨ , Cneq ^ τ 1pφq
˘

where

PartitionN pC1, ¨ ¨ ¨ , Cne
q ” @n ă N :

`

ł

1ďiďne

Cipnq ^
ľ

1ďiďne
1ďjďne
j‰i

 Cipnq_ ‰ Cjpnq
˘

55

Theorem 6.2. An D˚@˚-formula φ is satisfiable in the theory of arrays over
finite rings if and only if τpφq is satisfiable in S1S.

Proof. (ùñ) Suppose φ is satisfiable, i.e. there exists a finite ring having
dimension d and a coloration α : rds Ñ te1, ¨ ¨ ¨ , enu in which φ is valid, and call
this model M . Define the assignment σ as follows:

- σpCjq “ tn P N : αpnq “ eju for every j.

- σpNq “ d

Let’s prove inductively that τ 1 does not alter the validity of a formula:

• If M |ù spx1q “ x2, then xM1 ` 1 “ xM2 (mod d). Since xMi P rds, this is
true if and only if either σpx1q ă d and σpx2q “ σpx1q ` 1, or σpx1q “ d
and σpx2q “ 0, that is σ |ù τ 1pspx1q “ x2q.

• If M |ù arxs “ ej , then αpxM q “ ej , that is true if and only if σ |ù Cjpxq.

• If M |ù @xφ for φ without existential quantifiers, then for every n P rds
it holds that M |ù φpn{xq, that by inductive hypothesis is equivalent to
σ |ù τ 1pφpn{xqq for every n P t0, du, i.e. σ |ù Dx ď N : τ 1pφq.

• If M |ù Dyφ, then exists n P rds such that M |ù φpn{yq, that by inductive
hypothesis is equivalent to σ |ù τ 1pφpn{yqq, i.e. σ |ù Dy ď N : τ 1pφq.

(ðù) Suppose τpφq is satisfiable in S1S, i.e. there exists an assignment σ.
Define the colored graph M as follows:

- d :“ σpNq

- for n P rds, αpnq :“ ej such that σ |ù Cjpnq (it is unique since C1, ¨ ¨ ¨ , Cne

is a partition)

The proof that M is a model is the same as before read backwards.

56

7 Decidability of the D˚@˚-fragment of the theory
of finite rings

The theory of finite rings is defined as follows:

• Signature Σ:

– function symbols: s, p (both of arity 1)

– predicate symbols: “

• Class of Σ-structures: It contains every structure of the form pt1, ..., nu, Iq
such that:

– n P N´ t0u
– sIpiq ” i` 1 mod n

– pI ” i´ 1 mod n

We consider the problem of determining whether a finite set of literals is satis-
fiable or not. Explicitly we have the following:
Problem P:

• Input: A finite set of literals F in the language of Σ

• Output: Yes if F has a model, No otherwise.

7.1 Decidability for finite sets of literals

Theorem 7.1. The problem P is decidable.

Proof. Let F be any finite set of literals. It can be seen as a union of two sets
P and Q of the form P “ tsi “ tiuI and N “ tsj ‰ tjuj , with i P I and j P J .
By replacing the variables with new constants, we can suppose that si and ti
are ground for every i P I Y J .

Let’s manipulate these two sets by replacing and removing literals by ap-
plying some operations that preserve equisatisfiability. With a slight abuse of
notation, we will continue to call the sets P and N even after the modifications.

Rewriting rules are the following:

1. Every occurrence of sppptqq and every occurrence of ppsptqq are replaced
by t.

2. Every literal of the form ppt1q “ ppt2q is replaced with t1 “ t2, and every
literal of the form ppt1q ‰ ppt2q is replaced with t1 ‰ t2.

3. Every literal of the form t1 “ ppt2q or ppt2q “ t1 is replaced by spt1q “ t2,
and every literal of the form t1 ‰ ppt2q or ppt2q ‰ t1 is replaced by
spt1q ‰ t2.

57

4. Every literal of the form spt1q “ spt2q is replaced by t1 “ t2, and every
literal of the form spt1q ‰ spt2q is replaced by t1 ‰ t2.

5. For every literal of the form a “ b (where a and b are constants), replace
every other occurrence of b with a and then remove the literal a “ b.

6. Per every literal of the form snpaq “ b such that a ‰ b, replace every other
occurrence of b with snpaq and then remove the literal snpaq “ b.

Let’s apply the rules 1, 2, and 3 until no more rule can be applied. After
that, the symbol p does not appear anywhere.

Now let’s apply rules 4, 5 and 6 until no more rule can be applied. At this
point, the set P contains only literals of the form snpaq “ a, where n ą 0.

Indeed, we got P “ tsnipaiq “ aiuiPI , where I is finite (possibly empty).
The strategy is to determine effectively d̄ such that if P YN is satisfiable, then
there is a model whose dimension is less then or equal to d̄. This implies that
the problem is decidable, since there is only a finite number of candidate models
(having finite cardinality) to check. There are two cases:

• P ‰ ∅. If there exists a model that satisfies PYN , it satisfies P too, hence
every literal snipaiq “ ai must be valid in that model, and this tells us
that the dimension d of the model is such that d|ni for every i. Therefore
d
ˇ

ˇ gcdpn1, ..., n|I|q. Thus the set of the candidate models is restricted to

the rings whose dimension d is such that d
ˇ

ˇ gcdpn1, ..., n|I|q, i.e. to a finite
number of candidate models of finite cardinality.

• P “ ∅. If N is empty, also F is empty, thus it has a model. Suppose,
without loss of generality, that N is of the form N “ tsmj pajq ‰ bjujPJ .
Say µ :“

ř

jPJpmj`1q . We show that if there exists a model that satisfies
N , then there is a model that satisfies N whose dimension is d ď µ.
In fact, suppose there is a model M “ prdM s, IM q such that dM ą µ.
If we prove that there is an element that can be removed from the ring
without losing the satisfiability, we are done, since this operation can be
done (dM ´ µ)-times, obtaining at the end a model M̄ “ prdM̄ s, IM̄ q with
dM 1 ď µ.
Let’s say that an element i P rdM 1s of the ring is bounded if there exists
a j P J such that i P rIpajq , Ipsmj pajqqs

6. In M there is at least one
element which is not bounded. In fact, for every j P J , exactly the mj

elements (Ipajq , Ispajq ... Ipsmj pajqq) are bounded. Therefore at most
ř

jPJ mj “ µ elements are bounded.
Given a non bounded element i, we can construct a new model
M 1 “ prdM 1s, IM 1q, where dM 1 “ dM ´ 1 and for every variable c

IM 1pcq “

#

IM pcq, if IM pcq ă i

IM pcq ´ 1, if IM pcq ě i
.

Every disequality still holds, so the new structure is a model too.

6With rx, ys we mean the clockwise segment of the ring starting at x and ending at y

58

Having restricted the satisfiability problem to check a finite number of pos-
sible models, the decidability follows.

7.2 Satisfiability of a quantified fragment

Let’s consider a formula of the form

Dy@xA

where x is a single variable.
After having skolemized all the existential quantifiers, we write A in CNF

and we distribute the universal quantifier over the conjunctions, obtaining a
finite number of formulas of the form (*)

@xp A1 _ ¨ ¨ ¨ _ An _B1 _ ¨ ¨ ¨ _Bmq

In order to find a model of the starting formula, it is necessary to find a
model that satisfies every formula obtained through this process. Let’s analize
them individually.

First, note that we can move outside the scope of the quantifier every literal
 Ai e i Bi in which do not appear x. In fact @xpφ_ψq is equivalent to φ_@xpψq
if x do not appear in φ. With a slight abuse of notation, let still write (*) to
indicate the formula inside the scope of the quantifier.
Every Ai and Bj can have one of the following forms:

a) snpcq “ x or pnpcq “ x

b) snpxq “ x

Let’s apply the following rules:

1. If Ai has the form snpcq “ x (or pnpcq “ x), rewrite (*) as

 A2pt{xq _ ¨ ¨ ¨ Anpt{xq _B1pt{xq _ ¨ ¨ ¨ _Bmpt{xq

where t is snpcq (or pnpcq). This is an equivalent formula, since (*) can be
first written as

@xpA1 Ñ A2 _ ¨ ¨ ¨ An _B1 _ ¨ ¨ ¨ _Bmq

and then it is possible to apply the logic rule ”@xpx “ tÑ φq is equivalent
to φpt{xq if t do not contains x”.

2. Given the Bi of the form snipxq “ x, take k :“ maxipniq (where i is
iterated only on the Bi of this form). Test the satisfiability in the rings
having dimension ď k. It this test gives a sat output, a model is found; if
it gives an unsat output, we replace every Bi of the form snipxq “ x with
K and test the models having dimension ě k.

59

3. If Ai has the form snpxq “ x (hence Ai ” snpxq ‰ x), every ring
having dimension not dividing n is a model. The rings having dimension
dividing n are finitely many, so the satisfiability can be tested individually
by substituting Ai with K.

4. If the algorithm has not terminated yet, (*) is of the form

@xpB1 _ ¨ ¨ ¨ _Bmq

where every Bi has the form snpcq “ x or pnpcq “ x. So (*) can be
rewritten as:

@xpt1 “ x_ ¨ ¨ ¨ _ tm “ xq

where ti is snipciq or pnipciq. Then it suffices to test the satisfiability in
the models having dimension ď m. In fact, given a model that satisfies
the formula, x can take at most m different values.
If the satisfiability test fails, the formula is replaced by K.

After having applied these rules, either a model is found or only quantifier-
free formulas remained, hence reducing the satisfiability problem to the one of
the previous section.

In case the original formula has more than a single universal quantifiers, i.e.
it has the form Dy@xn ¨ ¨ ¨ @x1A, we apply the same procedure by induction,
treating the more external variables (xn ¨ ¨ ¨x2) as constants.

60

8 Decidability of the D˚@˚-fragment of the theory
of arrays over finite rings

8.1 Decidability for finite sets of literals

We consider the case where there is only an array a, and the new atoms are
all the ones of the form arcs “ e.

Let F be a set of literals of the form tpcq “ t1pc1q or arcs “ e (or their
negation).
Consider the problem P2: ”Does F have a model?”.

Theorem 8.1. The problem P2 is decidable.

Proof. F can be seen as a union of four sets:

• P “ ttipciq “ t1ipc
1
iqquI

• N “ ttjpcjq ‰ t1jpc
1
jquJ

• P 1 “ tartkpckqs “ ekuK

• N 1 “ tartlpclqs ‰ eluL

By the same argument of the theorem 8.1, if P is not empty, decidability follows.
Suppose P “ ∅. The idea is the same of the previous theorem: to effectively

determine an integer µ such that if there exists a model that satisfies F , then
there is a model with dimension ď µ that satisfies F .
Being every term ti of the form smipciq or pmipciq and every term t1i of the form

sm
1
ipc1iq or pm

1
ipc1iq, it is possible to define

µ :“
ÿ

jPJ

pmj ` 1`m1j ` 1q`
ÿ

kPK

pmk ` 1q`
ÿ

lPL

pml ` 1q

Suppose there is a model M with dimension d ą µ. There is at least an
element that can be removed from the model without affecting the validity of
the formulas in F . Hence it is possible to define a new model with dimension
d1 “ d´ 1. This operation can be done until the dimension of the new model is
ď µ.

61

8.2 With one quantifier

Let’s consider a formula of the form

Dy@xA

where A is a formula without quantifiers and x is a single index variable.

As done in the section 8.2, the existential quantifiers can be skolemized, A
can be written in CNF, and the universal quantifiers can be distributed over
the conjunctions.

We obtain formulas of form (*):

@xp A1 _ ¨ ¨ ¨ _ An _B1 _ ¨ ¨ ¨ _Bmq

when Ai and Bj are atoms.

Now apply rules 1, 2, and 3 from section 8.2, plus a new rule

5. Every literal of the form artpxqs ‰ ei is replaced by
ł

1ďjďne
j‰i

artpxqs “ ej

After having applied these rules, if the quantifier is not removed, we got
formulas of the form:

@xpt11 “ x _ ¨ ¨ ¨ _ t1m “ x _ art1pxqs “ el1 _ ¨ ¨ ¨ _ artm1pxqs “ elm1 q

Let’s use the convention that s´mpxq is interchangeable with pmpxq and s0pxq
is interchangeable with x.

————————————————————————

8.2.1 Particular case

For now, consider the restricted case where A is in CNF

A ” @xD1 ^ ¨ ¨ ¨ ^ @xDn1

and every Dk is of the form

arsnkp1qpxqs “ ekp1q _ ¨ ¨ ¨ _ ars
nkpmkqpxqs “ ekpmkq

with nkpiq ď nkpi
1q for i ă i1.

Since the quantifier is distributed over every Dk, we can apply the following
rule:

62

6a. Given Dk, let dk :“ ´nkp1q. Replace every snkpiq with snkpiq`dk .

This way, for every Dk, the first literal in the disjunction is arxs “ ekp1q, and
every nkpiq is positive. Basically, we got rid of all the predecessor function sym-
bols and of the redundant successor function symbols.

Let’s transform the formula into DNF:

A ” @xpC1 _ ¨ ¨ ¨ _ Cnq

Observe that there could be some Ck (statistically, a lots) containing subformu-
las like arsnpxqs “ ej ^ arsnpxqs “ ej1 with ej ‰ ej1 . Apply the following rule:

7. If a Ck contains both arsnpxqs “ ej and arsnpxqs “ ej1 , with ej ‰ ej1 ,
remove Ck.

After having applied the rule exhaustively, every remaining Ck has the form

arsnkp1qpxqs “ ekp1q ^ ¨ ¨ ¨ ^ ars
nkpmkqpxqs “ ekpmkq

where nkpiq ‰ nkpi
1q for every i ‰ i1.

Let M :“ max
k,i

nkpiq.

Given a Ck, it is possible to construct a one-to-one correspondence between
Ck and a partial function having domain t0, 1, ¨ ¨ ¨ ,Mu and codomain the set of
the elements t1, 2, ..., neu.

Example: suppose M “ 4, ne “ 2, and consider the formula

arxs “ 2^ ars2pxqs “ 1^ ars3pxqs “ 2

It can be seen as the tuple:

p2, ´, 1, 2, ´qx

In order to improve the readability, the latter notation will be used most of the
time, using implicitly the one-to-one correspondence.

At a logic level, p2, ´, 1, 2, ´qx is equivalent to

p2, 1, 1, 2, 1qx _

p2, 1, 1, 2, 2qx _

p2, 2, 1, 2, 1qx _

p2, 2, 1, 2, 2qx

This operation can be done for every Ki, obtaining a disjunction of total func-
tions having same domain and same codomain.

63

Let M be any model of A. Given an index i, by the semantic of the disjunc-
tion there exists a Ck u pe0, e1, ..., eM q such that

M |ù pe0, e1, ..., eM qi

Given i` 1, there exists a Ck1 u pe10, e11, ..., e1M q such that

M |ù pe10, e
1
1, ..., e

1
M qi`1

and such that
pe1, e2..., eM q “ pe

1
0, e

1
1, ..., e

1
M´1q (:q

Since this reasoning applies for every model and for every index, we can deduce
the following rule:

8a. Given a tuple pe0, e1, ..., eM q, if there is no tuple pe10, e
1
1, ..., e

1
M q such that

pe1, e2..., eM q “ pe10, e
1
1, ..., e

1
M´1q, then the tuple pe0, e1, ..., eM q can be

removed.

After having applied this rule exhaustively, there are two scenarios:

• Every tuple has been removed. The algorithm gives an unsat output.

• Some tuples remain. This means that there exists a cycle: given any
tuple Ck1

, there exists Ck2
such that they satisfy the property (:). For

Ck2
, there exists Ck3

such that they satisfy the property (:), and so on,
until a Cki is repeated. Following the cycle, it is easy to construct a model.
The algorithm gives a sat output.

8.2.2 General case

Now, consider the case where A is in CNF

A ” @xD1 ^ ¨ ¨ ¨ ^ @xDn1

and every Dk is of the form

arsnkp1qpxqs “ ekp1q_¨ ¨ ¨_ars
nkpmkqpxqs “ ekpmkq _ s

nk1 p1qpxq “ ck1p1q _¨ ¨ ¨_ s
nk1 pmk1 qpxq “ ckpmk1 q

with nkpiq ď nkpjq and nk1piq ď nk1pjq for i ă j.
Since the quantifier is distributed over every Dk, we can apply the following

rule:

6b. Given Dk, let dk :“ ´minpnkp1q, nk1p1qq. Replace every snkpiq with
snkpiq`dk and every snk1 piq with snk1 piq`dk .

64

Let’s transform the formula into DNF:

A ” @xpC1 _ ¨ ¨ ¨ _ Cnq

and remove subformulas equivalent to K (rule 7).

Every remaining Ck has the form

arsnkp1qpxqs “ ekp1q^¨ ¨ ¨^ars
nkpmkqpxqs “ ekpmkq ^ s

nk1 p1qpxq “ ck1p1q ^¨ ¨ ¨^ s
nk1 pmk1 qpxq “ ckpmk1 q

where nkpiq ‰ nkpjq for every i ‰ j. Note that the same does not necessarily
hold for every nk1piq and nk1pjq.

Let M :“ max
k,i

maxpnkpiq, nk1piqq.

Let Const be the set containing every constant that appears in the formula
A. Given a Ck, it is possible to construct a one-to-one correspondence between
Ck and a partial function having domain t0, 1, ¨ ¨ ¨ ,Mu and codomain the set
t1, 2, ..., neu

Ś

PpConstq.

Example: suppose M “ 3, ne “ 2, Const “ tc, c1, c2u and consider the
formula

arxs “ 2^ ars2pxqs “ 1^ ars3pxqs “ 2^ x “ c^ spxq “ c1 ^ s3pxq “ c^ s3pxq “ c1

It can be seen as the (2,M+1)-matrix:

ˆ

tcu tc1u ∅ tc, c1u
2 ´ 1 2

˙

x

which is logically equivalent to
ˆ

tcu tc1u ∅ tc, c1u
2 1 1 2

˙

x

_

ˆ

tcu tc1u ∅ tc, c1u
2 2 1 2

˙

x

This corrispondence is not expressive enough. In fact, note that the i-th
entry of the first row of a matrix is expressing that sipxq has to be equal to at
least the constants in the entry. Indeed, sipxq “ c^ sipxq “ c1 does not implies
that sipxq ‰ c2.

In order to avoid this ambiguity, let’s replace a matrix with the logically
equivalent disjunction of matrices such that every i-th entry of the first row
expresses exactly the set of the constants that sipxq is equal to.

65

Example: suppose M “ 1, ne “ 2, Const “ tc, c1u and consider the for-
mula

arxs “ 2^ arspxqs “ 1 ^ spxq “ c1

We have that spxq “ c is logically equivalent to pspxq “ c1^ spxq “ cq_ pspxq “
c1 ^ spxq ‰ cq and there are no conditions on x, i.e. px “ c ^ x “ c1q _ px “
c^ x ‰ c1q _ px ‰ c^ x “ c1q _ px ‰ c^ x ‰ c1q

Hence the formula is expressible by:
ˆ

tc, c1u tc1u
2 1

˙

x

_

ˆ

tc, c1u tc, c1u
2 1

˙

x

_

ˆ

tcu tc1u
2 1

˙

x

_

ˆ

tcu tc, c1u
2 1

˙

x

_

ˆ

tc1u tc1u
2 1

˙

x

_

ˆ

tc1u tc, c1u
2 1

˙

x

_

ˆ

∅ tc1u
2 1

˙

x

_

ˆ

∅ tc, c1u
2 1

˙

x

where the i´ th entry of the first column of each matrix express exactly which
constants sipxq is equal to.

Let M be any model of A. Given an index i, by the semantic of the disjunc-

tion there exists a Ck u
ˆ

S0 ¨ ¨ ¨ SM
e0 ¨ ¨ ¨ eM

˙

such that

M |ù

ˆ

S0 ¨ ¨ ¨ SM
e0 ¨ ¨ ¨ eM

˙

i

Given i` 1, there exists a Ck1 u
ˆ

S10 ¨ ¨ ¨ S1M
e10 ¨ ¨ ¨ e1M

˙

i`1

such that

M |ù

ˆ

S10 ¨ ¨ ¨ S1M
e10 ¨ ¨ ¨ e1M

˙

i`1

and such that
ˆ

S1 S2 ¨ ¨ ¨ SM
e1 e2 ¨ ¨ ¨ eM

˙

“

ˆ

S10 S11 ¨ ¨ ¨ S1M´1

e10 e11 ¨ ¨ ¨ e1M´1

˙

(:q

Since this reasoning applies for every model and for every index, we can de-
duce the following rule:

8b. Given a matrix

ˆ

S0 ¨ ¨ ¨ SM
e0 ¨ ¨ ¨ eM

˙

, if there is no matrix

ˆ

S10 ¨ ¨ ¨ S1M
e10 ¨ ¨ ¨ e1M

˙

such that : holds, then the matrix

ˆ

S0 ¨ ¨ ¨ SM
e0 ¨ ¨ ¨ eM

˙

can be removed.

66

If, after having applied this rule exhaustively, every matrix has been re-
moved, the algorithm gives an unsat output.

Otherwise, consider all the cycles, i.e. sequences of the form C0, C1, ..., Cn
such that Ci and Ci`1 satisfy the property (:) for every i P t0, ¨ ¨ ¨ , n´ 1u and
Cn and C0 satisfy it too. If there exists a model, it should be formed by one of
these cycles (with an abuse of notation, we could identify the model with the
cycle it is obtained from).

If we show that it is possible to find a bound, i.e. it is possible to effectively
compute a natural number d such that if there exists a model then there exists
a model having dimension ď d, then we are done.

We say that a matrix

ˆ

S0 ¨ ¨ ¨ SM
e0 ¨ ¨ ¨ eM

˙

is a matrix without constants if

S0 “ S1 “ ¨ ¨ ¨ “ SM “ ∅. Otherwise we say it is a matrix with constants.

We say that a cycle C is a power of a cycle C1 if C can be obtained through
finitely many concatenations of C17.

Consider a cycle
C “ C0, C1, ¨ ¨ ¨ , Cn

Observe that if it contains a repetition of a matrix with constants, say Ci “ Cj ,
then, in order to led to a consistent model, C must be a power of

C1 “ Ci, Ci`1, ¨ ¨ ¨ , Cj´1, Cj

So let’s consider only cycles without repetitions of matrices with constants.
What about repetitions of matrices without constants? Suppose that C

has a repetition of a matrix without constants, say Ci “ Cj . If the subcycle
Ci`1, ¨ ¨ ¨ , Cj does not includes a matrix with constants, we can consider the
cycle

C2 “ C0, ¨ ¨ ¨ , Ci´1, Ci, Cj`1, Cj`2, ¨ ¨ ¨Cn

obtained by removing the subcycle Ci`1, ¨ ¨ ¨ , Cj . If C forms a model, then C2
forms a model too, since in the removed subcycle no constants appear.

Thus, between the repetition of a matrix without constants there should
be at least a matrix with constants. Since every matrix with constants cannot
appear more than one time, then every matrix without constants can appear at
most m times, with m be the number of matrices with constants. Hence, we
found a bound.

7Note that we are implicitly considering C0, C1, ¨ ¨ ¨ , Cn and
Ci, Ci`1, ¨ ¨ ¨ , Cn, C0, C1, ¨ ¨ ¨ , Ci´1 to be the same object.

67

8.3 Handling constants

Let’s consider a formula of the form

Dy@xA

As done in the section 7.2, the existential quantifiers can be skolemized. In
order to deal with these new constants, in particular with literals of the form
x “ snpcq, we can introduce new arrays.

Let c be a constant and let n be the maximal number such that snpcq appears
in A. We check all the possible models having dimension ď n. If no model is
found, we know that it is not possible that smpcq “ sm

1

pcq with m ‰ m1 (with
m,m1 ď n).

Introduce the array symbol b having values in t´1, 0, 1, ¨ ¨ ¨ , nu. We should
think of brxs “ j as x “ sjpcq for j P t0, ¨ ¨ ¨ , nu, and brxs “ ´1 as x ‰ c^ x ‰
spcq ^ ¨ ¨ ¨ ^ x ‰ snpcq.

Note that this new elements ´1, ¨ ¨ ¨ , n must satisfy the following relations:

- @x1@x2pbrx1s “ brx2s ą ´1 Ñ x1 “ x2q

- @xpn ą brxs ą ´1 Ñ brspxqs “ brxs ` 1q

- Dxbrxs “ 0

where the symbol ą is just a synthetic way to express all the cases. These
realtions are constraints that a formula must satisfy in order to be consistent.

We can do so for every constant, since having a finite number of arrays
is the same as having an array with values in the cartesian product.

If we have the array a having values in Ea “ te1, ¨ ¨ ¨ , eneu and the array
b having values in Eb “ t´1, 0, 1, ¨ ¨ ¨ , nu, we introduce a new array ā having
values in the cartesian product Ea ˆ Eb.

More precisely, every literal of the form arxs “ ej is replaced by
Ž

iPEb
ārxs “

pej , iq and every literal of the form brxs “ i is replaced by
Ž

jPEa
ārxs “ pej , iq.

If there are many constants, this procedure is applied as many times.

Having showed this transformation, when dealing with constants we can use
only an array a and a set of elements Ea “ te1, ¨ ¨ ¨ , ene

u, keeping in mind that
the meaning of a has changed, and that the constraints written above must be
added to the formula of which we are testing the satisfiability.

68

8.4 Some observations on the general case with many uni-
versal quantifiers

Note: this section is a work in progress and still need some improvements.

Consider the case with more quantifiers. Suppose we have a formula of the
form

Dy@xA

where x “ xnq
, ¨ ¨ ¨ , x1 and A is a formula without quantifiers.

The existential quantifiers can be skolemized. We have two slightly different
ways to deal with the new constants. The first is applying the tactic used in
section 8.2.2, while the second is using the transformation introduced in the
previous section 8.3. In the following we will use the latter, which has the ad-
vantage of allowing a cleaner notation. However, with a little ingenuity it will
be clear that the first method works as well.

Apply rule 5 plus the following rules:

• artipxiqs “ artjpxjqs is replaced by

ł

1ďkďne

artipxiqs “ ek ^ artjpxjqs “ ek

• artipxiqs ‰ artjpxjqs is replaced by

ł

1ďk,k1ďne

k‰k1

artipxiqs “ ek ^ artjpxjqs “ ek1

Write A in CNF distributing the quantifiers over the conjunctions:

A ” @xD1 ^ ¨ ¨ ¨ ^ @xDn1

and apply rules 1, 2 and 3, plus a new rule:

4c. If there is a Dk of the form

Dk ” psnpxiq ‰ xj _ φ q

replace @xjDk with φpsnpxiq{xjq

Let’s apply:

69

6c. Given Dk, let dk :“ min tn | sn appears in Dku. Replace every snkpiq with
snkpiq´dk .

Now transform A into DNF:

A ” @xpC1 _ ¨ ¨ ¨ _ Cnq

and remove subformulas equivalent to K (rule 7).

The remaining atoms are of the form arsnpxiqs “ ej or of the form sn1pxiq “
sn2pxjq. The latters can be replaced by xi “ sn2´n1pxjq if n2 ě n1, or by
sn1´n2pxiq “ xj if n2 ă n1.

Every Ck can be written as

Ck ” Ck,x1
^ ¨ ¨ ¨ ^ Ck,xnq

^ Ck,E

where:

- Each Ck,xi
(shortening: Ck,i) is the conjunction of all the formulas con-

taining only the variable xi, i.e. the ones of the form arsnpxiqs “ ej
(remember we got rid of atoms of the form snpxiq “ xi by applying rule
2).
Define Ck,I :“ Ck,1 ^ ¨ ¨ ¨ ^ Ck,nq .

- Ck,E is the conjunction of all the formulas containing two index variables,
i.e. the equalities of the form snpxiq “ xj .

Let’s for a moment analyze Ck,E . We would like to write it in a nice and
treatable form. For example, if it contains both the formulas s2px1q “ x2 and
s4px2q “ x3, we would like to substitute the latter with s6px1q “ x3. Let’s
consider the weighted directed graph G given by:

• V “ t1, ..., nqu

• A “ tpi, jq | snij pxiq “ xj appears in Ck,Eu

• wpi, jq “ nij for all pi, jq P A. Notation: i
nij
ÝÝÑ j or j

´nij
ÝÝÝÑ i. Moreover,

for all i P V wpi, iq “ 0.

Note that by using this definition we are assuming that the graph is not a multi-
graph. This assumption is not yet properly justified, but it will be treated later.

Apply the following algorithm.

Algorithm ”G”: For every i, j, k P V such that i
nij
ÝÝÑ j and j

njk
ÝÝÑ k

- If there is no edge pi, kq P A, add i
nij`njk
ÝÝÝÝÝÑ k to G.

- If there is an edge i
nik
ÝÝÑ k, check if nik “ nij ` njk. If yes, proceed to

another triple. If no, terminate and return as output |nik ´ pnij ` njkq|.

70

When the the algorithm has visited every triple without terminating, it
returns as output G.

Apply the following rule:

9. Run Algorithm ”G”.

- If it returns a positive integer, it means that G contains a non-zero
sum cycle

i1
n12
ÝÝÑ i2

n23
ÝÝÑ ¨ ¨ ¨

npm´1qm
ÝÝÝÝÝÝÑ im

nm1
ÝÝÝÑ i1

Returning to the logic notation, this means that xi1 “ sdpxi1q, where
d “ n12`¨ ¨ ¨`nm1. Hence, a model of Ck has to have dimension ď d.
The algorithm tests these finitely many candidate models, and if the
output is unsat, Ck is replaced by K and the algorithm proceeds.

- If it returns G, every cycle is zero sum. For every (weakly) connected
components K of G, there exists at least one vertex (say rK) having
no positive ingoing arcs.
Replace Ck,E by

Ź

Kp
Ź

iPK s
wprK ,iqpxrK q “ xiq

Note: above we assumed that the graph is not a multigraph. Actually, it could
be, but there are only two cases when that happens: either there is repeated
atom snpxiq “ xj (and then one of the copies can be removed), or there are two
atoms of the form sn1pxiq “ xj and sn2pxiq “ xj with n1 ‰ n2. This case is
analogous to the one where Algorithm ”G” returns a positive integer (|n1´n2|).

Now, let M :“ max tn | sn appears in Au.

Every Ck can be seen as the pair (Ck,I , Ck,E), and Ck,I can be seen as a
nq-tuple of partial functions having domain t0, 1, ¨ ¨ ¨ ,Mu and codomain the set
of the elements t1, 2, ..., neu.

Example: suppose M “ 3, ne “ 2, nq “ 3 and consider the formula

arx1s “ 2^ arspx1qs “ 1^ ars2px1qs “ 1^

arx2s “ 1^ arspx2qs “ 1^ ars2px2qs “ 1^ ars3px2qs “ 1 ^

arspx3qs “ 2^ ars2px3qs “ 2^ ars3px3qs “ 2 ^

x2 “ s2px1q

It can be seen as:

¨

˝

2 1 1 ´ ´

1 1 1 1 s2px1q

´ 2 2 2 ´

˛

‚

71

which is logically equivalent to the disjunction of ”full” formulas

¨

˝

2 1 1 1 ´

1 1 1 1 s2px1q

1 2 2 2 ´

˛

‚ _

¨

˝

2 1 1 2 ´

1 1 1 1 s2px1q

1 2 2 2 ´

˛

‚ _

¨

˝

2 1 1 1 ´

1 1 1 1 s2px1q

2 2 2 2 ´

˛

‚ _

¨

˝

2 1 1 2 ´

1 1 1 1 s2px1q

2 2 2 2 ´

˛

‚

Note that there are inconsistent formulas, like the two on the right. In fact,
ars4px1qs “ 2^ars2px2qs “ 1^s2px1q “ x2 implies ars4px1qs “ 2^ars4px1qs “ 1.

Now consider the set F containing all the formulas C such that CI is full,
i.e. for every i P t1, ¨ ¨ ¨ , nqu and for every n P t0, ¨ ¨ ¨ ,Mu, then C contains the
term arsnpxiqs. Remove from F the formulas that are inconsistent with A. The
remaining formluas are called mosaics.

Consider all the cycles C0, C1, ¨ ¨ ¨ , Cn, C0 of formulas in F such that for
every i “ 0, ¨ ¨ ¨ , n and Ci and Ci`1 of the form8

Ci ”

¨

˚

˚

˝

e10 e11 ¨ ¨ ¨ e1M „

e20 e21 ¨ ¨ ¨ e2M „

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ „

enq0 enq1 ¨ ¨ ¨ enqM „

˛

‹

‹

‚

Ci`1 ”

¨

˚

˚

˝

e110 e111 ¨ ¨ ¨ e11M „

e120 e121 ¨ ¨ ¨ e12M „

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ „

e1nq0 e1nq1 ¨ ¨ ¨ e1nqM
„

˛

‹

‹

‚

it holds that

pe11, e12..., e1M q “ pe
1
10, e

1
11, ..., e

1
1pM´1qq (:q

In order to prove the decidability, it suffices to apply the reasoning of section
8.2.2 that shows a bound for the length of these cycles.

Wanting to sketch a more detailed algorithm, we could use the following
argument.

Given a cycle, and given the permutation σi that exchanges i and 1, i.e.

σipjq :“

$

’

&

’

%

1 if j “ i

i if j “ 1

j otherwise

, every formula in the cycle9

8Here, „ means that the entry can be empty or not
9By σpφq we indicate the formula obtained from φ by replacing simultaneously every oc-

currence of xi with xσpiq

72

σipC0q, σipC1q, ¨ ¨ ¨ , σipCnq, σipC0q should be contained in F .

Indeed, if the cycle C0, C1, ¨ ¨ ¨ , Cn is consistent with a model M , it means
that there exists an instance j “ pj1, ¨ ¨ ¨ , jnq

q of x such that

M |ù C0pjq

M |ù C1ppj1 ` 1, j2, ¨ ¨ ¨ , jnq qq

¨ ¨ ¨

M |ù Cnppj1 ` n, j2, ¨ ¨ ¨ , jnq qq

Given the instance

σipjq “ pji, j2, ¨ ¨ ¨ , ji´1, j1, ji`1, ¨ ¨ ¨ , jnq
q

it must hold that

M |ù σipC0qpσipjqq

M |ù σipC1qpji, j2, ¨ ¨ ¨ , ji´1, j1 ` 1, ji`1, ¨ ¨ ¨ , jnq qq

¨ ¨ ¨

M |ù σipC1qpji, j2, ¨ ¨ ¨ , ji´1, j1 ` n, ji`1, ¨ ¨ ¨ , jnq qq

This implies that if a formula C is in F but there exists i such that σipCq is
not in F , then C cannot be contained in any consistent cycle, hence it can be
removed from F .

After that, every remaining cycle C0, C1, ¨ ¨ ¨ , Cn is such that for every i P
t2, ¨ ¨ ¨ , nqu, also the cycle σipC0q, σipC1q, ¨ ¨ ¨ , σipCnq, σipC0q remained.

Hence, for every remaning cycle there is a permuted cycle for every direction
i “ 1, 2, ¨ ¨ ¨ , nq.

Example. Let nq “ 2 and M “ 2. Suppose we found the cycle

ˆ

1 2 „

1 2 „

˙

,

ˆ

2 3 „

1 2 „

˙

,

ˆ

3 1 „

1 2 „

˙

,

ˆ

1 2 „

1 2 „

˙

,

For σ2 we have an other cycle

ˆ

1 2 „

1 2 „

˙

,

ˆ

1 2 „

2 3 „

˙

,

ˆ

1 2 „

3 1 „

˙

,

ˆ

1 2 „

1 2 „

˙

,

73

We can see these cycles as sides of a square (in the general case, of a nq-cube):

ˆ

1 2 „

1 2 „

˙

,

ˆ

2 3 „

1 2 „

˙

,

ˆ

3 1 „

1 2 „

˙

,

ˆ

1 2 „

1 2 „

˙

ˆ

1 2 „

2 3 „

˙

,

ˆ

1 2 „

3 1 „

˙

,

ˆ

1 2 „

1 2 „

˙

,

and then check if the new formulas included in its completition (below in
italics) belong to F .

ˆ

1 2 „

1 2 „

˙

,

ˆ

2 3 „

1 2 „

˙

,

ˆ

3 1 „

1 2 „

˙

,

ˆ

1 2 „

1 2 „

˙

ˆ

1 2 „

2 3 „

˙

,

ˆ

2 3 „

2 3 „

˙

,

ˆ

3 1 „

2 3 „

˙

,

ˆ

1 2 „

2 3 „

˙

ˆ

1 2 „

3 1 „

˙

,

ˆ

2 3 „

3 1 „

˙

,

ˆ

3 1 „

3 1 „

˙

,

ˆ

1 2 „

3 1 „

˙

ˆ

1 2 „

1 2 „

˙

,

ˆ

2 3 „

1 2 „

˙

,

ˆ

3 1 „

1 2 „

˙

,

ˆ

1 2 „

1 2 „

˙

If there is a new formula not in F , the cycle is discarded. If there is any
formula C (new or old) such that CE does not match with its position in the

hypercube (e.g. if in the position p0, 1q there is the formula

ˆ

2 3 ´

1 2 s2px1q

˙

)

then the cycle is discarded. If every cycle is discarded, the algorithm terminates
with an unsat output; otherwise if a cycle is not discarded, it defines a model
and the algorithm terminates with a sat output.

74

Bibliography

[1] Benjamin Aminof et al. Parameterized Model Checking of Token-Passing
Systems. Ed. by Kenneth L. McMillan and Xavier Rival. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2014, pp. 262–281. isbn: 978-3-642-
54013-4. doi: 10.1007/978-3-642-54013-4_15.

[2] Roderick Bloem et al. Decidability of Parameterized Verification. Synthe-
sis Lectures on Distributed Computing Theory. Morgan Claypool Pub-
lishers, 2015. isbn: 1627057439.

[3] Michael C. Browne, Edmund M. Clarke, and Orna Grumberg. “ Reasoning
about networks with many identical finite state processes”. In: Informa-
tion and Computation 81 (01 1989), pp. 13–31. doi: 10.1016/0890-

5401(89)90026-6.

[4] Edmund Clarke et al. “Verification by Network Decomposition”. In: (2004).
Ed. by Philippa Gardner and Nobuko Yoshida, pp. 276–291. doi: 10.

1007/978-3-540-28644-8_18.

[5] E. Allen Emerson and Kedar S. Namjoshi. “Reasoning about Rings.” In:
(1995). Ed. by Ron K. Cytron and Peter Lee, pp. 85–94.

[6] E. Allen Emerson and Kedar S. Namjoshi. “On reasoning about rings”. In:
International Journal of Foundations of Computer Science 14.04 (2003),
pp. 527–549. doi: 10.1142/S0129054103001881.

[7] Silvio Ghilardi and Silvio Ranise. “Backward Reachability of Array-based
Systems by SMT solving: Termination and Invariant Synthesis”. In: Logi-
cal Methods in Computer Science Volume 6, Issue 4 (Dec. 2010). doi: 10.
2168/LMCS-6(4:10)2010. url: https://lmcs.episciences.org/966.

[8] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, eds. Automata Log-
ics, and Infinite Games: A Guide to Current Research. Berlin, Heidelberg:
Springer-Verlag, 2002. isbn: 3540003886. doi: 10.5555/938135.

[9] Nancy Lynch. Distributed Algorithms. The Morgan Kaufmann Series in
Data Management Systems. Morgan Kaufmann, 1996. isbn: 9781558603486.

[10] R. Milner. Communication and Concurrency. USA: Prentice-Hall, Inc.,
1989. isbn: 0131150073.

[11] Klaus Schneider. Verification of Reactive Systems. Jan. 2004, p. 428. doi:
10.1007/978-3-662-10778-2.

75

https://doi.org/10.1007/978-3-642-54013-4_15
https://doi.org/10.1016/0890-5401(89)90026-6
https://doi.org/10.1016/0890-5401(89)90026-6
https://doi.org/10.1007/978-3-540-28644-8_18
https://doi.org/10.1007/978-3-540-28644-8_18
https://doi.org/10.1142/S0129054103001881
https://doi.org/10.2168/LMCS-6(4:10)2010
https://doi.org/10.2168/LMCS-6(4:10)2010
https://lmcs.episciences.org/966
https://doi.org/10.5555/938135
https://doi.org/10.1007/978-3-662-10778-2

	Introduction
	Aknowledgements
	I Token-Passing Rings as Labeled Transition Systems
	Labeled Transition Systems (LTS)
	Definition
	Composition
	Associativity

	Projection and silent action

	Temporal Logics
	CTL*
	Computational Tree Logic
	Linear Temporal Logic
	Indexed Temporal Logics

	Token passing rings as LTS
	Definition of token passing ring
	Fairness conditions
	Stuttering bisimulation
	The Reduction Theorem

	Decidability results for token-passing rings
	Parameterized model-checking problem
	Cutoff theorems
	Overview over more general (un)decidability results
	Applications

	II Token-Passing Rings as array-based systems
	System description
	Preliminaries
	Array-based systems
	Backward reachability
	Formalization of token-passing rings

	Theory of arrays over finite rings and MSOL
	Introduction of S1S
	Encoding the theory of arrays over finite rings into S1S

	Decidability of the **-fragment of the theory of finite rings
	Decidability for finite sets of literals
	Satisfiability of a quantified fragment

	Decidability of the **-fragment of the theory of arrays over finite rings
	Decidability for finite sets of literals
	With one quantifier
	Particular case
	General case

	Handling constants
	Some observations on the general case with many universal quantifiers

